
Simulating Tax Policy: Agent Utility,

Elections, and the Dynamics of Labor

and Taxation with LLM Generative

Agents

Samuel David Kleiner

Advisor: Professor Chi Jin

Submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Engineering

Department of Electrical and Computer Engineering

Princeton University

May 2025

I hereby declare that this Independent Work report represents my own work in ac-

cordance with University regulations.

I hereby declare that this Independent Work does not include regulated human sub-

jects research.

Samuel David Kleiner

Simulating Tax Policy: Agent Utility, Elections,

and the Dynamics of Labor and Taxation with

LLM Generative Agents

Samuel David Kleiner

Abstract

Experimenting with tax policy in the real world can be prohibitively expensive and po-

litically infeasible. Governments need innovative simulation and modeling techniques to

evaluate policy impacts before deployment. Existing approaches in optimal income taxa-

tion theory create sup-optimal policies by relying on economic models that make simplifying

assumptions about human behavior. This thesis argues that large language models [LLMs]

learn tax policies that result in higher social welfare than the tax policies produced by

existing economic models by providing a scalable, a↵ordable method to model societal be-

havior and optimize for social welfare. We model policy decisions as an infinite dynamic

game between a tax planner (leader) and workers (followers), optimizing for Stackelberg

equilibria that maximize social welfare. We use LLMs to generate synthetic human data

facilitating policy mechanism design, testing, and optimization. To increase realism, we

implement simulation scenarios where the tax planner is elected by worker agents. We

validate our LLM-based approach by comparing our results in a two worker agent, one tax

planner simulation to a Stackelberg equilibria that we calculate through backwards induc-

tion. We investigate the e↵ect of di↵erent simulation scenarios and skill distributions on

social welfare. We find that our LLM-based approach achieves higher social welfare than

the tax policy calculated according to economist Emmanuel Saez’s optimal income taxation

formulas. Future work could implement extensions to Saez’s formulas that incorporate more

elements of human economic activity with the goal of achieving higher social welfare with

learned policies in these more complicated scenarios.

iii

Acknowledgements

Thank you Seth Karten, who has guided me through the learning curves of conducting

academic research this year.

Thank you to Professor Chi Jin for being my advisor, and organizing fascinating research

presentations for the group, and demonstrating how to question assumptions most people

do not see.

Thank you to Professor Jaime Fisac for being my second reader and taking on my project.

Thank you to my team and coaches for keeping it fun.

Thank you to my friends for the laughs along the way.

Thank you to Sarah for talking science with me.

Thank you to my family for being my foundation model.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Figures . ix

1 Introduction xii

1.1 The Problem . xii

1.2 Why LLMs . xiii

1.3 Related Work . xiv

1.3.1 Simulating Human Believable Agents xiv

1.3.2 The Integration of Artificial Intelligence into Economics xiv

1.3.3 Modeling Noisily Rational Human Behavior xiv

1.3.4 Inverse Game Theory . xv

1.3.5 Using LLMs to Find the Optimal Income Tax xv

1.3.6 Why Simulate Agent Responses to Income Tax: Atkinson-Stiglitz

Theorem . xvi

1.4 Novel Contributions . xvii

1.5 Challenges and Considerations . xvii

1.6 Thesis Organization . xviii

2 Stackelberg Game Theory xix

2.1 Infinite Leader-Follower Games . xix

2.1.1 Threat or Reward Strategies . xix

2.2 Mechanism Design and Policy . xx

v

2.3 Stackelberg Game . xxi

2.4 Stackelberg Equilibria . xxii

3 Optimal Income Taxation Theory xxiv

3.1 Simple Model with No Behavioral Responses xxiv

3.1.1 Framework . xxiv

3.1.2 Utilitarian Optimization . xxv

3.1.3 Solution . xxv

3.2 The Mirrlees Model . xxvi

3.2.1 Framework . xxvi

3.2.2 Social Welfare Maximization . xxvii

3.2.3 Key Results from Mirrlees . xxvii

3.3 Saez’s Framework . xxviii

3.3.1 Saez’s Optimal Income Taxation Formulas xxix

3.3.2 Calculating a Saez Optimal Tax Policy xxix

3.3.3 Susceptibility to Lucas Critique . xxxi

3.4 Isoelastic Utility . xxxi

3.5 Calculation of Social Welfare Metric . xxxii

4 Large Language Models and In-Context Learning xxxiii

4.1 Large Language Model . xxxiii

4.1.1 Attention, Transformers, and Decoder-Only Models xxxiii

4.1.2 In-Context Learning . xxxiv

5 Methodology xxxvi

5.1 Algorithm Pseudocode . xxxvi

5.2 Agent Objectives: Utility Functions . xxxviii

5.2.1 Worker Objective: Isoelastic Utility xxxviii

5.2.2 Tax Planner Objective: Social Welfare Function Utility xxxviii

5.3 Scenarios . xxxix

vi

5.3.1 Rational Scenario . xxxix

5.3.2 Democratic Scenario . xxxix

5.3.3 Mathematical Formulation for all Scenarios xl

5.3.4 Rational Scenario: Game Framework xl

5.3.5 Rational Scenario Diagrams . xlii

5.3.6 Democratic Scenario: Game Framework xlii

5.3.7 Democratic Scenario Diagram . xliv

6 Results xlvi

6.1 Ablations . xlvi

6.1.1 LLM Workers, LLM Tax Planner . xlvii

6.2 Convergence and Simulation Size . xlviii

6.3 Experiments . xlix

6.3.1 Skill Distributions . xlix

6.4 Results . liii

6.4.1 Social Welfare Scores . liii

6.4.2 Comparing Saez’s Tax Policy To Our Learned Policies lvii

6.4.3 Elected Leaders in Democratic Scenario Experiments lix

7 Discussion lxii

8 Future Work lxiv

8.1 Future Directions . lxiv

8.1.1 Influence of Utility Distributions . lxiv

8.1.2 Multi-LLM Interactions . lxv

8.1.3 Multi-Agent Communication . lxv

8.1.4 Extensions to Saez’s Optimal Income Taxation Theory lxv

A Engineering and Industrial Standards lxvi

A.1 Programming Languages . lxvi

A.2 Software . lxvi

vii

A.2.1 Industry-Wide Accepted File Standards lxvi

A.2.2 Large Language Models . lxvii

A.3 Artifical Intelligence Ethical Standards . lxvii

B Ablations lxviii

B.1 One LLM Worker, Fixed Tax Planner . lxix

B.2 LLM Workers, Fixed Tax Planner . lxx

B.3 Fixed Workers, LLM Tax Planner . lxxi

B.4 One LLM Worker, LLM Tax Planner . lxxii

C Experiments lxxiii

C.1 Data from 100 Agent Simulation Runs . lxxiii

C.1.1 Saez Planner . lxxiv

C.1.2 Rational Scenario . lxxviii

C.1.3 Democratic Scenario . lxxxii

C.1.4 Democratic Scenario with Platforms Feature lxxxvi

D Derivation of Optimal Income Tax for Utilitarian Social Welfare Using

Simple Model without Behavior Response xc

E Extensions to Saez’s Optimal Income Taxation Formulas xciii

E.1 Extensions . xciii

E.1.1 Migration E↵ects . xciii

E.1.2 Coordinated Tax Policy with Migration xciv

E.1.3 Tax Avoidance Responses . xciv

E.1.4 Rent-Seeking E↵ects . xciv

F Code xcv

F.1 stackelberg calc.py . xcv

F.2 saez.py . cviii

viii

List of Figures

5.1 Diagram of Rational Scenario Information Flow xlii

5.2 Diagram of Rational Scenario Timescale . xlii

5.3 Diagram of Democratic Scenario Information Flow xliv

5.4 Diagram of Democratic Scenario Timescale xlv

6.1 Ablation Study Results: LLM Workers, LLM Tax Planner xlvii

6.2 GB2 Distribution . l

6.3 Gamma Distribution . li

6.4 Lognormal Distribution . li

6.5 Weibull Distribution . lii

6.6 Social Welfare . liii

6.7 Tax Rate for First Bracket . liv

6.8 Tax Rate for Second Bracket . liv

6.9 Tax Rate for Top Bracket . lv

6.10 Social Welfare: U.S. Income Distribution . lv

6.11 Tax Rate for First Bracket . lvi

6.12 Tax Rate for Second Bracket . lvi

6.13 Tax Rate for Top Bracket . lvii

6.14 Democratic Scenario: Uniform Distribution lix

6.15 Democratic Scenario: U.S. Income Distribution lix

6.16 Democratic Scenario with Platforms: Uniform Distribution lx

6.17 Democratic Scenario with Platforms: U.S. Income Distribution lx

ix

B.1 Ablation Study Results: One LLM Worker, Fixed Tax Planner lxix

B.2 Ablation Study Results: LLM Workers, Fixed Tax Planner lxx

B.3 Ablation Study Results: Fixed Workers, LLM Tax Planner lxxi

B.4 Ablation Study Results: One LLM Worker, LLM Tax Planner lxxii

C.1 Social Welfare Results . lxxiv

C.2 Tax Rate for First Bracket . lxxiv

C.3 Tax Rate for Second Bracket . lxxv

C.4 Tax Rate for Top Bracket . lxxv

C.5 Social Welfare Results . lxxvi

C.6 Tax Rate for First Bracket . lxxvi

C.7 Tax Rate for Second Bracket . lxxvii

C.8 Tax Rate for Top Bracket . lxxvii

C.9 Social Welfare Results . lxxviii

C.10 Tax Rate for First Bracket . lxxviii

C.11 Tax Rate for Second Bracket . lxxix

C.12 Tax Rate for Top Bracket . lxxix

C.13 Social Welfare Results . lxxx

C.14 Tax Rate for First Bracket . lxxx

C.15 Tax Rate for Second Bracket . lxxxi

C.16 Tax Rate for Top Bracket . lxxxi

C.17 Social Welfare Results . lxxxii

C.18 Tax Rate for First Bracket . lxxxii

C.19 Tax Rate for Second Bracket . lxxxiii

C.20 Tax Rate for Top Bracket . lxxxiii

C.21 Social Welfare Results . lxxxiv

C.22 Tax Rate for First Bracket . lxxxiv

C.23 Tax Rate for Second Bracket . lxxxv

C.24 Tax Rate for Top Bracket . lxxxv

x

C.25 Social Welfare Results . lxxxvi

C.26 Tax Rate for First Bracket . lxxxvi

C.27 Tax Rate for Second Bracket . lxxxvii

C.28 Tax Rate for Top Bracket . lxxxvii

C.29 Social Welfare Results . lxxxviii

C.30 Tax Rate for First Bracket . lxxxviii

C.31 Tax Rate for Second Bracket . lxxxix

C.32 Tax Rate for Top Bracket . lxxxix

xi

Chapter 1

Introduction

Accurately evaluating tax policies requires large-scale, real-world experimentation that is

politically and financially challenging. Traditional economic models simplify human be-

havior, limiting their real-world accuracy. To address these challenges, innovative and

scalable methods are needed for simulating societal behavior and optimizing tax policy.

This research leverages large language models (LLMs) to generate synthetic human data

and optimize tax policy, enabling a↵ordable policy design since these models are already

trained and can model human behavior [16]. By modeling tax policy decisions as a dy-

namic Stackelberg game between the government and residents, we create a simulation for

tax policy generation and testing, and lay the groundwork for policy generation and testing

in other policy areas.

1.1 The Problem

This thesis investigates whether formulating tax policy optimization as a Stackelberg game

using synthetic human data generated by LLM generative agents results in higher social

welfare than the optimal tax policy proposed by traditional economic models.

xii

1.2 Why LLMs

Simulating humans’ preferences in response to tax policies with LLMs allows users of this

method to maximize any social welfare function and simulate any agent utility that can be

articulated by natural language. Our simulation’s formulation as a Stackelberg game does

allow for other methods to solve it than LLMs. Backwards induction is a classic method

for solving Stackelberg games, but our grid-search implementation of backwards induction

taken in Appendix F.1 is intractable for large numbers of agents. Our implementation has

a time complexity of O(11num brackets+num agents) since each tax bracket is discretized into

11 possible rates: [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. To find Stackelberg equilibria,

we could have used methods from Multi-Agent Reinforcement Learning without LLMs [26]

[51]. However, LLMs have the ability to take natural language input, like demographic and

personal information, and have that information a↵ect the action that the LLM outputs

[15] [34]. Also LLMs’ emergent ability to do in-context learning [12] [32] [50] allows for the

same learning capability provided by more traditional Multi-Agent Reinforcement Learning

[MARL] techniques.

Another advantage to our method is that using LLMs without fine-tuning allows us to

avoid spending time and money on training and fine-tuning a new model. Furthermore,

prompt engineering allows our simulation to be extremely flexible in its design without

requiring any retraining as new features are implemented and tested.

We understand that LLMs are not all-powerful. There are limitations. An artificial

tax game setting may be out-of-distribution with respect to the LLM’s training dataset.

There is a growing body of research on the abilities and limitations of LLMs to model

human preferences that shows LLMs can model human behavior, but LLMs do not exhibit

all the same biases that humans do [16] [43] [44]. Therefore, we validate the LLMs ability

to converge to Stackelberg equilibria in our simulation by showing that it converges to the

same Stackelberg equilibria as backwards induction for small numbers of agents and tax

brackets.

xiii

1.3 Related Work

While harnessing the advantages of LLMs for our work, we drew inspiration from several

sources of prior research.

1.3.1 Simulating Human Believable Agents

[34] designed a simulation where multi-agent interactions followed human-believable behav-

iors. This work provided an example of a multi-agent human simulacra simulation.

1.3.2 The Integration of Artificial Intelligence into Economics

The prior work of [52] and [53] built a two-level deep reinforcement learning simulation

to optimize tax policies in a simulated economy where agents can gather resources, trade,

and build houses. Their work has been followed by other attempts at mechanism design

in economics using artificial intelligence. Our work furthers the integration of artificial

intelligence into the field of economic simulation and mechanism design.

1.3.3 Modeling Noisily Rational Human Behavior

Humans don’t always behave with perfect rationality. Instead, they act in a ”noisily ratio-

nal” manner, making generally reasonable decisions but with some inconsistency. Research

by [25] has demonstrated the e↵ectiveness of models that balance data from actual human

behavior and humans’ theoretically optimal actions. Their work also shows how mechanism

design can be used to achieve specific policy goals, like reducing the ine�ciency of tra�c

congestion. We use LLMs to model a balance between human’s noisily rational behavior

and theoretically optimal economic output. We use mechanism design to maximize social

welfare.

xiv

1.3.4 Inverse Game Theory

Our approach simulates the e↵ects of tax policy from the bottom up by having each agent

solve their own personal optimization problem. Inverse game theory demonstrates the

advantages of this bottom up approach. [10] showed that by learning the parameters of

individual agents’ personal optimization problems, we can better model how these agents

perceive and respond to the leader in Stackelberg games. In our simulation, each agent

performs exploration and exploitation in their own personal optimization problem, creating

a more accurate simulation of strategic interactions.

1.3.5 Using LLMs to Find the Optimal Income Tax

Our simulation is based on the Mirrleesian framework from the field of optimal income

taxation theory. The field seeks to design tax policy to maximize social welfare according to

a social welfare function. It is di�cult to find the tax rates that raise maximum revenue while

encouraging economic growth, which promotes higher social welfare through redistribution

from the government. If tax rates are too high, people are discouraged from working, but

if they are too low, not enough money is raised and then redistributed through a variety

of government services. Furthermore, the elasticity of labor has a cyclical relationship with

determining the optimal income tax rates. The elasticity a↵ects the optimal rates which in

turn a↵ects the elasticity, creating a di�cult, circular optimization problem.

Using the product of income equality and economic productivity as a measure of social

welfare, the prior work of [52] found a 16% increase in social welfare while using deep

reinforcement learning techniques to adjust tax policy compared to using baseline policies

based on the economist Saez’s optimal taxation framework proposed in 2001 [38]. We use

LLMs instead of deep reinforcement learning techniques to learn optimal tax policies.

Saez’s more recent work suggests that the socially optimal top tax rate - for people with

the income level of U.S. CEOs - could be 83% [35]. However, there is significant disagreement

among economists. A 2019 University of Chicago survey of a panel of economic experts

found that 20 economist disagreed and 8 agreed with the statement that: “Raising the top

xv

federal marginal tax on earned personal income to 70 percent [...] would raise substantially

more revenue (federal and state combined) without lowering economic activity” [37]. This

disagreement demonstrates the need to improve the accuracy of tax policy simulations. The

work of Saez and others in optimal income taxation theory uses numerical and theoretical

simulations that usually estimate population parameters, like labor elasticity, and then

derive optimal tax rates. This approach is limited by the Lucas critique [27] explained in

Section 3.3.3.

1.3.6 Why Simulate Agent Responses to Income Tax: Atkinson-

Stiglitz Theorem

It is necessary to focus on a tractable subset of the general problem of simulating human

response to tax policy. Our simulation’s tax policy only consists of the income tax. Income

tax is the primary way the U.S. government raises revenue [9]. Another reason to focus on

improving the simulation of income taxes is an important result in optimal income taxa-

tion theory: the Atkinson-Stiglitz theorem [2] [11]. It assumes weak separability between

consumption goods and labor in utility. In practical terms, this means that how hard some-

one works doesn’t change their relative preferences for goods, like apples versus oranges.

Their overall budget depends on their labor, but the ratio at which they would be willing

to substitute one good for another does not. It also assumes homogeneity across agents in

consumption sub-utility. This means that di↵erent people may have di↵erent overall utility

functions due to di↵erent preferences for labor/leisure tradeo↵s, but they are assumed to

have the same relative preferences for di↵erent consumption goods once their income level is

fixed. With these assumptions, Atkinson and Stiglitz found that commodity taxes are not

useful, so all redistribution should be done through the income tax. This result motivates

our focus on the income tax.

xvi

1.4 Novel Contributions

The work of this thesis went towards the LLM Economist project described in [22]. We

extend the frontier of economic policy simulation by introducing several innovations that

di↵erentiate our work from previous research, particularly the AI Economist developed

in [52] and [53]. While we build upon the AI Economist’s foundation of using artificial

intelligence for tax policy optimization, our approach introduces several novel innovations.

Our most significant innovation is the use of LLMs for human-behavior modeling, which

opens up a whole new realm of possibilities for increasing the realism of our simulation.

We also introduce a democratic scenario that implements the election of the tax planner

from among worker agents allowing for democratic mechanism design instead of having a

fixed, centralized tax planner. This better reflects real-world democratic processes where

policymakers are selected by constituents. Furthermore, we introduce a platforms feature

where every election period, worker agents decide if they want to run in the election, and,

if they do, they output their proposed tax policy changes. All worker agents then see these

proposed changes and vote. They record the elected tax planner’s proposed tax policy

changes and actual tax policy action the elected tax planner takes. Worker agents’ memory

of policy performance, elected tax planner’s platforms, and elected tax planner’s actions,

enables agents to form coalitions, engage in strategic voting, and make decisions based on

their utility functions.

1.5 Challenges and Considerations

Ensuring accuracy in our simulation requires consideration of how personal values and de-

mographics impact human behavior, which has been studied in [29]. We need to exercise

caution regarding the biases and reliability of model outputs, especially since most studies

on the impact of personal values and demographics on human behavior involve western, ed-

ucated, industrialized, rich, and democratic [WEIRD] populations [1]. Furthermore, LLMs

have been shown to exhibit bias [4].

xvii

1.6 Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 provides background on the

Stackelberg Game and game theory, establishing the theoretical framework for modeling

tax policy as a leader-follower game. Chapter 3 explores Optimal Income Taxation Theory,

reviewing foundational contributions from Mirrlees and Saez while introducing key con-

cepts like social welfare maximization and isoelastic utility functions. Chapter 4 examines

Large Language Models and In-Context Learning, and explains how these technologies can

generate synthetic human behavior. Chapter 5 details our methodology for designing and

implementing the our tax policy simulation as a Stackelberg game. Chapter 6 presents our

experimental results, analyzing the performance of our approach compared to traditional

economic models and optimal income taxation formulas. Chapter 7 discusses how our re-

sults achieved our initial goals. Chapter 8 reviews possible extensions to our simulation as

potential directions for future work. The appendices provide engineering standards, more

detailed data from our ablations and experiments, mathematical derivations, extensions

to Saez’s Optimal Income Taxation Formulas, and the most important elements of our

simulation code.

xviii

Chapter 2

Stackelberg Game Theory

Stackelberg games have been used to model other economic situations, like consumer re-

sponse to pricing when two companies sell the same product [28] [21], and have grown

popular with the increased focus on AI as a good model for “computing optimal strate-

gies to commit to” [28]. There is a growing body of theory and experiments to prove the

e↵ectiveness of Stackelberg games as a model.

2.1 Infinite Leader-Follower Games

Leader-follower games, particularly those modeled as infinite games of fixed duration, can

be used to model decision-making scenarios where one agent (leader) commits to a strategy,

and other agents (followers) respond. The term, “infinite games of fixed duration”, means

that the game is modeled as if it will continue infinitely, so that there are no changes in

strategy based on an approaching end to the game [5].

2.1.1 Threat or Reward Strategies

Strategic threats can be used by the leader to encourage a specific response from the follower

agents. For example, if the leader commits to taxing all income at 100% if followers do not

work more than ten hours. the followers will probably decide to work more than ten hours.

xix

However, if they do not, the leader has to accept the consequences and follow through on

their threat for their threat strategy to be e↵ective. The leader can also design policies with

rewards to incentivize specific responses. By using reward strategies, policies can incentivize

tax compliance or specific labor patterns.

We see threat and reward strategies used in real-world resource allocation policies.

An example of resource allocation where threat and reward strategies are used is energy

allocation. Los Angeles energy market prices can change depending on the time of day to

incentivize use during peak production and discourage use during peak consumption [23].

These strategies are also used in resource allocation for compute. Amazon Web Services

o↵ers reduced prices for batch processing in data centers to utilize compute during o↵ peak

hours [3]. Our simulation allows for experimentation with threat and reward strategies in

resource allocation through government tax revenue redistribution.

2.2 Mechanism Design and Policy

Mechanism design is a field within economics and game theory that focuses on designing

rules known as “mechanisms” to achieve specific objectives. The rules are design to align

agents’ objectives such that when agents act rationally, the outcome of the game is the

desired outcome of the mechanism designer. We can reformulate the generation of policies,

like tax policy as a mechanism design problem. The current “mechanism design approach”

to tax policy in optimal income taxation theory is flawed. This approach determines optimal

resource allocation using a social welfare function, and designs a tax policy to achieve that

allocation. This two step process fails because it inadequately incorporates humans’ behav-

ior response, which results in di↵erent implementations producing di↵erent outcomes [36].

We do mechanism design of tax policies with LLMs as they generate human-believable be-

havior for each agent, simulating the preferences and decisions of both leaders and followers

to better incorporate the behavior response of worker agents to tax policies.

xx

2.3 Stackelberg Game

The Stackelberg game is the ideal formalization for conducting mechanism design by learn-

ing optimal income taxation in our two-timescale economic simulation. The tax planner

agent is the leader while the worker agents (the followers) respond. Our work is supported

by recent work in computational mechanism design where the leader’s commitment to its

policy guides the followers to Stackelberg equilibria [7], which can lead to higher follower

welfare [8].

The Stackelberg game o↵ers a strong theoretical foundation for analysis of our simula-

tion. Its sequential decision-making structure [46], removes the circularity issues that occur

in simultaneous-move (static) games where each agent’s optimal action depends on the other

agents’ actions. The sequential structure supports equilibria convergence by allowing the

tax planner to use the reinforcement learning [RL] equivalent of backward induction. This

is necessary for complex environments where backwards induction is not tractable. The

tax planner optimizes its policy by learning and then anticipating its followers’ behavior

responses to di↵erent tax policies. The Stackelberg game allows our simulation’s worker

agents with bounded rationality to do no-regret learning by adapting their behavior re-

sponses incrementally based on past experiences rather than calculating optimal responses

immediately, which would require the assumption of fully rational agents. [7]. The tax

planner also does no-regret learning. We distinguish between the RL version of backward

induction and no-regret learning in our simulation by noting that the tax planner observes

workers’ actions. This allows it to anticipate their responses to changes in tax policy, giving

backward induction a significant role in accelerating convergence by guiding global pol-

icy adjustments. The worker agents do not anticipate the e↵ect of their actions on the

global policy, so they are only doing no-regret learning to minimize their personal regret

in response to the policy. All worker agents collectively doing no-regret learning is still a

powerful guiding force towards convergence. In our simulation, all followers move simulta-

neously after observing the leader’s move. This implementation of a Stackelberg game is

still a dynamic game because there are distinct stages of play - the leader stage followed

xxi

by the followers stage - even though the followers’ subgame is itself a static game. Overall,

the sequential design of the Stackelberg game facilitates the tax planner’s ability to learn

and anticipate agents’ behavior response through the RL version of backwards induction. It

also allows the worker agents to do no-regret learning, enabling our simulation to converge

at Stackelberg equilibria.

2.4 Stackelberg Equilibria

Stackelberg equilibria are the Stackelberg game equivalent of Nash equilibria. No agent can

unilaterally improve its position when the leader’s plays its optimal strategy in response

to the anticipated reactions of rational followers. Generalized Stackelberg equilibria extend

these concepts to multi-leader, multi-follower games where there are interdependent con-

straints between players’ strategies, which is relevant for resource allocation problems, like

tax policy. Stackelberg equilibria are only stable under specific conditions:

• Both the leader and followers have perfect knowledge of each other’s payo↵ functions

and strategies [21], which is generally unrealistic for real-world applications [20].

• The leader correctly predicts the followers’ responses.

• The followers are assumed to act rationally, always choosing their optimal response

[49].

• The leader must commit to its strategy and cannot change it after followers make

their decisions [20].

While our agents do not have perfect knowledge of each other’s payo↵ functions and strate-

gies, we encourage exploration for specific periods within our simulation runs to allow the

agents to learn each other’s payo↵ functions and strategies. We validate in 6.1 that the

leader can correctly predict the followers’ response for a small simulation where the Stack-

elberg equilibria is tractable. As we have established, humans act noisily rationally and so

do our followers in periods where they balance exploration and exploitation. However to

xxii

converge to stable Stackelberg equilibria at the end of our simulation runs, our agents are

prompted to act rationally by practicing pure exploitation. To meet the final condition in

our simulation, the leader commits to its tax policy for one full tax period.

xxiii

Chapter 3

Optimal Income Taxation Theory

Optimal income taxation theory provides a set of mathematical guidelines to how tax sys-

tems should be designed to maximize social welfare. It balances equity with productivity. It

seeks to promote equity through the government’s redistribution of tax revenue and increase

productivity by encouraging labor.

The development of optimal income taxation theory began in earnest with the work of

James Mirrlees in [31], and has received significant contributions from Edward Saez. While

the field has many contributors, we will focus on their innovations as the fundamental

works. The theory incorporates humans’ behavioral responses from empirical evidence. We

summarize the development of the Mirrleesian framework to provide the mathematical and

theoretical basis for Saez’s optimal income taxation formulas. We provide an overview of

the critical economic concepts for Saez’s formulas, and use them to establish a policy that

we compare our learned policies against.

3.1 Simple Model with No Behavioral Responses

3.1.1 Framework

We begin with the simplest model where income z is fixed for each agent. The model

incorporates no behavioral responses.

xxiv

Assumptions and constraints:

• Utility u(c) is strictly increasing and concave, and c is after-tax income

• Income distribution has probability density h(z)

• Tax function T (z) determines tax paid by agent with income z.

• Consumption c = z�T (z) is a agent’s post-tax income. We will use z̃ = c = z�T (z)

in our simulation.

• E is the required government revenue. E consists of government administrative costs,

regulatory, defense, and intelligence agency funding, and other programs that con-

sume tax revenue without redistributing it to citizens.

3.1.2 Utilitarian Optimization

If the government maximizes utilitarian social welfare:

max
T (z)

Z 1

0
u(c)h(z)dz =

Z 1

0
u(z � T (z))h(z)dz (3.1)

subject to the constraint

Z 1

0
T (z)h(z)dz � E (3.2)

3.1.3 Solution

A full derivation of the Langrangian, its first-order condition, and the derivation of optimal

income tax for utilitarian social welfare can be found in Appendix D.

The Lagrangian is:

L = [u(z � T (z)) + � · T (z)] · h(z) (3.3)

First-order condition:

0 =
@L

@T (z)
= [�u0(z � T (z)) + �] · h(z)) u0(z � T (z)) = � (3.4)

xxv

The Lagrange multiplier is cost of the constraint, and keeps the objective function bound

to that constraint. The result, u0(z�T (z)) = �, can also be understood as the idea that the

utilitarian social welfare objective is maximized when the marginal utility u0 of consumption

(z � T (z)) (the additional happiness gained by one additional unit of post-tax income) is

constant across all income levels. Maximizing the utilitarian social welfare objective requires

post-tax income z � T (z) to be a constant regardless of an agent’s pretax income, z. For

perfect equalization of post-tax income, a 100% marginal tax rate is required. This extreme

result occurs because we have assumed no behavioral responses to taxation. In the real

world, agents consider a 100% marginal tax rate to be unfair, and it has an extremely

negative e↵ect on agents’ incentive to work. When approximations of agents’ behavioral

response are implemented, the utilitarian social welfare objective is still maximized by the

equalization of marginal utility across income levels, but a 100% marginal tax rate and

equal post-tax income is not required.

3.2 The Mirrlees Model

3.2.1 Framework

Mirrlees’s work in [31] introduced a more realistic model for deriving the optimal income

tax by incorporating labor supply responses:

• agents maximize utility u(c, l) subject to the constraint c = wl � T (wl)

• l is labor supply, w is wage rate (which we call skill in our simulation), and T (·) is a

nonlinear income tax function

• Skill w is private information (known only by each agent) with probability density

f(w)

xxvi

3.2.2 Social Welfare Maximization

In [31], Mirrlees introduces the general social welfare objective that maps individual agent’s

utility to social welfare, so the government maximizes:

SWF =

Z
G(u(c, l))f(w)dw (3.5)

Subject to:

Z
T (wl)f(w)dw � E (3.6)

When G(·) is linear, G(u) = u [38]. We see this in the utilitarian case in Appendix 3.1.2.

Yet, the chosen G(·) is usually strictly concave, so that agents with lower utilities have a

greater e↵ect on the social welfare score. Thus to maximize social welfare the government’s

tax policy should focus on helping lower utility agents for whom the marginal utility is

higher.

3.2.3 Key Results from Mirrlees

We review some key results from Mirrlees that guide the design of optimal tax policies and

are reflected in our simulation design.

Marginal Tax Rate Constraint

An optimal marginal tax rate, T 0(·), follows the constraint: 0  T 0(·)  1. This result

rules out negative marginal tax rates where T 0(·) < 0. A negative marginal tax rate can

occur in the real world through a benefit, like the Earned Income Tax Credit[19] where

the government transfers a net positive amount of cash to an agent. This result also rules

out marginal tax rates T 0(·) > 1, which would equate to the government taking all earned

income in that tax bracket and then requiring additional payment from that agent based

on how much they earned in the bracket with T 0(·) > 1. Thus, T 0(·) > 1 would completely

disincentivize an agent from working to produce the incomes taxed at T 0(·) > 1.

xxvii

Marginal Tax Rate for Highest Earners

Marginal tax rate T 0(·) should be zero for incomes at the top of the income distribution,

h(z), if skill distribution, f(w) is bounded [31] [18]. On this analytical result, Mirrlees

writes, “I would also hesitate to apply the conclusions regarding individuals of high skill:

for many of them, their work is, up to a point, quite attractive, and the supply of their

labour may be rather inelastic (apart from the possibilities of migration)” [31]. We present

an intuitive explanation for this theoretical result. If the highest earning agent made $1

million per year under a marginal tax rate, 0  T 0(·)  1, and the government reduced the

marginal tax rate to zero for all income over $1 million, highest earning agent would be

incentivized to work more. This would increase production, yet the government would not

lose any revenue because no one was earning more than $1 million before its policy change.

This policy for top earners is clearly impractical, and, as Mirrlees points out, does not

take into account the labor inelasticity of highly-skilled individuals who may be unlikely to

change their behavior significantly based solely on their marginal tax rate. Moreover, Saez

notes that the zero marginal tax rate result only definitively applies to the single highest

earner [38], making it even more impractical to implement in a tax policy.

Marginal Tax Rate for Lowest Earners

Assuming every agent outputs nonzero labor and the lowest z = wl > 0, then T 0(·) = 0 at

the bottom. Although this result was not explicitly calculated by Mirrlees in [31], it was

later proved to be a result of the Mirrleesian framework by [40].

3.3 Saez’s Framework

Saez was one of the first economists to apply the economic model developed by Mirrlees

to real tax policies using empirical data by linking earnings elasticities to optimal income

tax formula [41] [38]. In [38], Saez extended the work of Mirrlees by deriving the optimal

general non-linear income tax, and matched the skill distribution he used in numerical

simulations to U.S. Income distributions. By using the same social welfare calculation and

xxviii

the same initial skill distribution, we compare the optimal tax policy found by our LLM-

based approach to an optimal tax policy calculated from Saez’s general non-linear income

tax formula, taking inspiration from [52] and [53].

3.3.1 Saez’s Optimal Income Taxation Formulas

Building on the Mirrlees framework, Saez proved in [38] that the optimal tax rate for income

z is:

T 0(z) =
1�G(z)

1�G(z) + a(z)e
(3.7)

where T 0(z) is the optimal marginal tax rate at income z; G(z) is the social welfare weight,

representing how much society values redistributing income to individuals earning z or less;

a(z) is the Pareto parameter, describing the shape of the income distribution above z; and

e is the elasticity of taxable income with respect to the net-of-tax rate, (1 � T 0(z)). The

net-of-tax rate is the fraction of an extra dollar an agent gets to keep.

3.3.2 Calculating a Saez Optimal Tax Policy

To calculate an optimal tax policy according to Saez’s formulas, we use the elasticities for

low, middle, and high earners calculated by Saez and Gruber in [17]. Since each run of the

simulation depends on the agents’ skill distribution, we calculate G(z) and a(z) for each tax

bracket based on the agents’ skill levels. Our implementation can be found in Appendix

F.2. We use a piecewise linear tax policy in our simulation since the U.S. federal income

tax policy is piecewise linear. A piecewise linear tax policy is a policy with set marginal

income tax rates for defined income brackets.

Calculating G(z): The Social Welfare Weight

G(z) quantifies how much society values additional income for individuals earning above

threshold z. We assign welfare weights to each agent inversely proportional to their income,

so g(zi) = 1/zi. We normalize these weights so they sum to one. Then, for a given z, we

compute G(z) as the sum of all welfare weights for incomes above z, divided by (1�F (z)),

xxix

where F (z) is the fraction of incomes below z.

G(z) =

P
i:zi�z g(zi)

1� F (z)
(3.8)

Calculating a(z): The Pareto Parameter

The parameter a(z) is the local Pareto parameter of the income distribution at income level

z. It captures how quickly the density of incomes decreases above income z. For most

income levels, we use the formula:

a(z) =
z · f(z)
1� F (z)

(3.9)

where f(z) is the density of the income distribution at z, estimated using kernel density

estimation. For the top tax bracket, we define a(z) using the mean income m of those in

the bracket:

a(z) =
m

m� z
(3.10)

where z is the bracket’s lower bound. This calculation for the top bracket better handles

the heavy-tailed nature of income distributions.

Implementation for Discrete Brackets

Once G(z) and a(z) are calculated, along with the elasticity e from [17], we compute the

optimal marginal tax rate using Saez’s formula:

⌧(z) =
1�G(z)

1�G(z) + a(z)e
(3.11)

For each bracket, we calculate a single tax rate using a representative income level z. For

non-top brackets, z is chosen as the midpoint of the bracket.

z = 0.5 · (bstart + bend) (3.12)

xxx

For the top bracket, z is chosen closer to the start to better represent the majority of

taxpayers in that bracket

z = bstart + 0.1 · (bend � bstart) (3.13)

This approach transforms Saez’s continuous formula into a practical, implementable tax

schedule with discrete brackets. The choice of where to evaluate z within each bracket is a

design decision that can a↵ect the resulting rates, but using the midpoint (or slightly above

the lower bound for the top bracket) is a reasonable approach.

3.3.3 Susceptibility to Lucas Critique

Economists calculate the empirical labor elasticity from historical data, it is a fixed input

in Saez’s optimal income taxation formulas. Yet, as Lucas points out in [27], a new tax

policy will result in changes to the behavior of agents, which results in a new labor elastic-

ity, which results in a new optimal tax rate. This cycle continues. Saez’s formulas cannot

avoid the Lucas critique because of his formulas top down nature. They requires calculating

population wide averages to produce optimal tax rates, and do not model the behavior of

individual agents. However, the behavior of agents di↵ers among di↵erent classes of agents

[22]. In our approach, we model each agent’s reaction to tax rates instead of estimating and

fixing an elasticity for a large population group. By learning the optimal Stackelberg equi-

libria from the individual agents, we avoid making inaccurate population-wide assumptions

about human behavior.

3.4 Isoelastic Utility

Widely used to model risk-averse preferences, isoelastic utility is also known as constant

relative risk aversion. We will use this form:

ui = ẑi � c · l�i (3.14)

xxxi

where c is the labor disutility coe�cient, li is the labor of agent i, ẑ is the pre-tax income,

and � is the labor disutility exponent. An entity with a � > 1 means that the agent is risk

- in our simulation risk is labor - averse. As labor increases, the additional utility for every

additional unit of labor decreases. Intuitively, someone working and getting paid for two

hours of work instead of one is doubling their salary at a level of labor that is still quite low;

whereas, someone working 81 instead of 80 hours is seeing a small increase in their income

when they are already working extremely hard.

3.5 Calculation of Social Welfare Metric

Using the same metric for social welfare calculation as [52] and [53], we sum all agent’s util-

ities and divide by their pre-tax incomes. Here is our implementation from our planner.py

file:

1 swf = sum([u[i]/max(z[i],1) for i in range(len(u))])

Code/swf.py

By comparing the swf results from Saez’s optimal taxation policy and our learned policy,

we determine if our method learns a better policy than the policy calculated from Saez’s

formulas.

xxxii

Chapter 4

Large Language Models and

In-Context Learning

4.1 Large Language Model

Large Language Models are machine learning models trained on extensive amounts of text

data, often including much of the internet. These models, such as OpenAI’s GPT, are

capable of generating human-like text, answering complex queries, and performing tasks

across a wide range of domains. LLMs are a subset of foundation models, a broader category

of pre-trained models designed to perform a variety of tasks without or with minimal fine-

tuning.

4.1.1 Attention, Transformers, and Decoder-Only Models

The underlying architecture of most major LLMs at the moment is the transformer, intro-

duced by [45]. Transformers revolutionized natural language processing by employing an

attention mechanism to process input sequences in parallel rather than sequentially, mak-

ing them extremely e�cient. The attention mechanism is a weighted sum of all the tokens

in an input. The weights depend on the importance of each token to others in the input

token sequence, so greater “attention” is paid to tokens that are the most relevant to other

xxxiii

tokens. The attention mechanism allows the model to “draw global dependencies between

input and output” [45]. With enough training data, this results in nuanced understanding

of inputs and useful response generation. The transformer architecture consists of two main

components: the encoder and decoder. The encoder processes the input sequence and gen-

erates contextual embeddings. Contextual embeddings are representations of words that

taken into account their context instead of static embeddings, like Word2Vec [30], which

assign a single vector to a word regardless of its context. The decoder generates output

sequences based on the processed embeddings.

Decoder-only models, like Generative Pretrained Transformer [GPT] models, focus ex-

clusively on generation tasks by predicting the next token in a sequence, so it is best

suited for tasks like text completion or generation. This also means that when engineering

prompts, the order of the words in the prompt is critical. Prompt engineering is the process

of crafting inputs to guide the model’s outputs.

This thesis leverages LLMs to model human behavior due to their unique capabili-

ties of generating human-believable text from natural language inputs and their extensive

pretrained knowledge. Since LLMs can be trained on most of the internet, they are ex-

ceptionally good at producing one-shot human believable text. They simulate believable

human behavior, even in complex scenarios like tax policy decision-making. Furthermore,

unlike other optimization methods, LLMs can interpret and respond to inputs expressed in

natural language, such as demographic details or policy descriptions. Using LLMs in our

simulation removes the need to invest time and money to train unique models for unique

situations. Prompt engineering enables e�cient customization of our simulation.

4.1.2 In-Context Learning

Our simulation relies on LLMs’ ability to improve their performance on a task when provided

with examples in the input. This is an emergent ability known as In-Context Learning

[ICL]. As an example, when tasked with sentiment analysis of tweets, the accuracy of

LLMs increased if examples of correct input-output pairs were included in the prompt.

Notably, the accuracy of LLMs decreased below the baseline accuracy - the accuracy when

xxxiv

no examples were given - when examples of sentiment analysis with the wrong answer were

given [47]. This phenomenon shows LLMs’ ability to learn from context, allowing us to do

a version of more traditional reinforcement learning methods in our simulation.

xxxv

Chapter 5

Methodology

Within our tax policy Stackelberg game, we implement a classic RL loop in which agents are

initialized, they act in the simulation depending on their state, and receive a reward from

their environment. The tax planner and worker agents balance exploration and exploitation

of tax policy and labor choices, allowing the tax planner to optimize its policy based on the

learned responses of the worker agents.

5.1 Algorithm Pseudocode

Here is pseudocode that describes the implementation of our simulation.

xxxvi

Algorithm 1 Tax System Simulation

1: Initialize agent skills: skills = {s1, . . . , sN}
2: if uniform distribution then

3: skills {si.uniform() for i in 1 to N}
4: else if us income distribution then

5: skills {si.GB2() for i in 1 to N}
6: end if

7: Create agents:

8: Initialize workers {Wi}Ni=1 with skills si
N
i=1 and isoelastic utility

9: Initialize tax planner P with swf utility and tax rates if the planner is fixed

10: Main simulation loop:

11: for each timestep t do

12: Get current worker statistics (income and utility)

13: if t mod two timescale = 0 then

14: if democratic scenario then

15: Execute voting process:

16: Agents declare candidacy and platforms (if enabled)

17: Agents vote for preferred candidates

18: Count votes and determine leader

19: Inform agents of new leader

20: Set tax policy:

21: Elected leader chooses the change in tax policy

22: else if planner is LLM then

23: Tax planner sets new tax rates based on worker statistics

24: end if

25: end if

26: Agents perform actions:

27: for each agent do

28: Agent decides labor hours based on tax rates and their utility function

29: end for

30: Apply taxes and distribute benefits:

31: Calculate pre-tax incomes from labor choices

32: Apply tax rates to calculate post-tax incomes and total tax revenue

33: Update utilities:

34: for each agent do

35: Update agent utility based on income, tax paid, and rebate

36: end for

37: end for

xxxvii

5.2 Agent Objectives: Utility Functions

5.2.1 Worker Objective: Isoelastic Utility

All rational, also known as egotistical, worker agents are initialized with a skill level, vi,

and have an isoelastic utility function. We use this form:

ui = ẑi � c · l�i ,

where ẑi = zi � T (zi) +
1
N

PN
j=1 T (zj) represents post-tax income, c is the labor disutility

coe�cient, and � is the labor disutility exponent.

Workers’ Objective: Each worker Wi 2 W chooses actions lit 2 A at each timestep

t when exploitation is occurring to maximize their expected individual utility, with the

objective maxJWi :

max
li0,...,l

i
T�1

E
"
T�1X

t=0

ui(ot, l
i
t, ⌧bt/Kc)

#
(5.1)

Workers cannot directly observe each other’s actions, but receive feedback through the tax

rebate, which is used to update their utility function. This utility serves as the reward for

each timestep.

5.2.2 Tax Planner Objective: Social Welfare Function Utility

The tax planner agent has a social welfare utility function, defined by this formula:

SWF =
X

i

ui
zi
, (5.2)

The tax planner’s objective is to maximize the sum of all agents’ utility divided by pre-tax

income to promote equity. The tax planner is provided with relevant history, and a prompt

to output new tax rates for three tax brackets. If the number of brackets is larger than the

number of agents, the state space is too large for true exploration to occur. We do our final

experiment with 100 agents and income brackets: [[0, 90000), [90000, 159100], [159100,1)]].

Tax Planner’s Objective: At the beginning of each tax year k, the planner chooses

xxxviii

a tax policy ⌧k 2 T to maximize their expected social welfare objective maxJP :

max
⌧0,⌧1,...,⌧bT/Kc�1

E
"
T�1X

t=0

swf(ot, lt, ⌧bt/Kc)

#
(5.3)

where, ot is the observation, and lt = (l1t , . . . , l
N
t) are the actions of all workers at

timestep t. The social welfare acts as the reward for each timestep.

5.3 Scenarios

5.3.1 Rational Scenario

If the simulation is set to the rational scenario, there is one tax planner agent, and n worker

agents. The simulation is structured as a two timescale optimization problem where the

tax planner agent sets tax rates on a slower timescale (the leader’s stage in the Stackelberg

game) with the goal of optimizing social welfare, and workers output their labor on a faster

timescale (the followers stage - a static subgame), trying to optimize their isoelastic utility

functions at every timestep.

5.3.2 Democratic Scenario

If the simulation is set to the democratic scenario, the tax planner is elected from among

all worker agents every two timescale. The elected tax planner then outputs the tax policy

as well as outputting labor. Agents vote for the tax planner based on their personal history

of their labor, utility, and which agent was the leader from past timesteps.

Democratic Scenario with Platforms

To enhance the realism of the simulation, we implemented a platforms feature. When the

platforms feature is enabled, all worker agents who want to run in an election output their

proposed tax policy changes. Every agent will then receive the list of candidates and their

proposed tax policy changes when they are voting. This enables agents to vote based on

the proposed changes as well as their personal history of their labor, their utility, which

xxxix

agent was the tax planner, and what the tax planner’s proposed and actual policy was from

past timesteps. The elected tax planner is under no constraint that requires them to follow

through on their proposed tax policy.

5.3.3 Mathematical Formulation for all Scenarios

Maximize SWF =
X

i

ui
zi

(Tax Planner) (5.4)

Maximize ui = zi � c · l�i (Worker i) (5.5)

Subject to: Tk 2 [0%, 100%], �Tk 2 {�20%,�10%, 0%, 10%, 20%}. (5.6)

5.3.4 Rational Scenario: Game Framework

We model the simulation of tax policy and labor decisions as a dynamic game involving two

primary classes of agents: workers and tax planners. These agents operate in a structured

environment characterized by the following components:

State Space (S)

The state space S represents all possible configurations of the game at any time step t:

• st = (Tt, Ht), where Tt represents the tax policy at time t, defined as marginal tax

rates for discrete income brackets, and Ht represents the historical context, including

previous actions and outcomes. The outcomes are the aggregated historical pre-tax

income ẑ and utility u of all agents, and the total social welfare score.

Action Space (A)

Worker Agents:

• awi,t = li,t, where li,t is the labor choice of worker i at time t. Workers choose li to

maximize ui while balancing exploitation and exploration. When the time step is

in the last 10% of the simulation or a slow timescale period, the historical message

xl

is updated to instruct the LLM to output the best labor choice to maximize their

utility, switching to pure exploitation.

Tax Planner Agent:

• apt = (�T1,t,�T2,t,�T3,t), where �Tk,t represents the change in tax rates for the k-th

bracket at time t. Each �Tk,t is constrained to {�20%,�10%, 0%, 10%, 20%}.

Observation Space (O)

• Each agent observes a partial view of the state st:

Workers: owi,t = (Tt, vi, hi,t), where vi is the worker’s skill level and hi,t is the personal

history of labor and utility.

Tax Planner: opt = Ht

Game Dynamics and Information Structure

Agents act sequentially within a time step.

• If it is time for an election:

Step 1: Tax planner observes aggregated labor and income data to set or update tax

policy if it is time for a new policy.

Step 2: In a simultaneous-move subgame, workers output their labor choice based

on the current tax policy and their personal utility.

xli

5.3.5 Rational Scenario Diagrams

Figure 5.1: Diagram of Rational Scenario

Information Flow

Figure 5.2: Diagram of Rational Scenario

Timescale

5.3.6 Democratic Scenario: Game Framework

We model the simulation of tax policy and labor decisions as a dynamic game involving

one class of agents: workers. One of the worker agents also serves as a tax planner during

each tax period. These agents operate in a structured environment characterized by the

following components:

xlii

State Space (S)

The state space S represents all possible configurations of the game at any time step t:

• st = (Tt, Ht, Pt, Ct/K), where Pt represents the current elected tax planner, and Ct

represents the set of worker agents and their platforms running in an election during

an election timestep. Ct is only included in the state space if the platforms feature is

enabled.

Action Space (A)

Worker Agents:

• awi,t = (li,t, ei,t, ci), where ei,t is the vote of worker i for tax planner, and ci is the

worker agent’s proposed tax policy changes if the platforms feature is enabled, and it

is an election timestep.

Tax Planner Agent:

• apt = (�T1,t,�T2,t,�T3,t, li,t, ei,t, ci).

Observation Space (O)

• Each agent observes a partial view of the state st, Workers: owi,t = (Tt, vi, hi,t), where

hi,t is the personal history of labor, utility, and which agent was tax planner. If the

platforms feature is enabled, the personal history includes what the tax planner’s

proposed tax policy and actual policy was.

Elected Tax Planner: opt = (Tt, vi, hi,t, Ht), where the elected tax planner maintains

the history of a worker agent, while adding, Ht during the period when the tax planner

is in o�ce.

Game Dynamics and Information Structure

Agents act sequentially within a time step.

xliii

• If it is time for an election:

Step 1: If the platforms feature is enabled, all worker agents decide if they are

running in the election, and output their proposed tax policy changes if they are.

Step 2: All worker agents and the current tax planner, vote on the new tax planner,

receiving candidates platforms if the platforms feature is enabled.

Step 3: The elected tax planner observes aggregated labor and income data, and

outputs their tax policy changes.

• For every timestep, t:

Step 4: In a simultaneous-move subgame, all worker agents and the current tax

planner decide labor e↵orts based on the current tax policy, personal utility, and

personal histories.

5.3.7 Democratic Scenario Diagram

Figure 5.3: Diagram of Democratic Sce-

nario Information Flow

xliv

Figure 5.4: Diagram of Democratic Sce-

nario Timescale

xlv

Chapter 6

Results

With the game dynamics established, we performed ablations to ensure that LLMs could

accurately optimize the actions of the tax planner and worker agents to maximize their

utility. We also tested various simulation parameters to determine the parameters that

allowed the LLM to find the optimal solution. The simulation parameters tested include

the number of timesteps, history length, and tax year length.

Ablation means to surgically remove. Our ablations remove complexity from the sim-

ulation by fixing the outputs of some agents to create a simpler optimization problem for

the LLM. We use agents with fixed outputs and LLM agents in di↵erent combinations to

demonstrate that the LLM outputs the correct actions to maximize social welfare according

to a calculation of the Stackelberg equilibria using backwards induction in Appendix F.1.

We used a local instance of LLaMa - Meta’s LLM - to run these tests since it is open-source.

6.1 Ablations

We used a simple simulation with one tax planner agent and two worker agents to validate

the ability of LLMs to solve our two timescale optimization problem. The Stackelberg

equilibria with two worker agents and two tax brackets, has the optimal tax rates [100, 0],

and optimal labor of 60 for both workers. We tested every combination of Fixed and LLM

agents. The results from the final test is shown below, and the rest of the results can be

xlvi

found in Appendix B.4.

6.1.1 LLM Workers, LLM Tax Planner

(a) Labor Worker 0, LLM (b) Labor Worker 1, LLM

(c) Tax Rate for First Bracket, LLM (d) Tax Rate for Second Bracket, LLM

Figure 6.1: Ablation Study Results: LLM Workers, LLM Tax Planner

We can see that the LLM performs exploration as well as exploitation, which it is instructed

to do in the worker agent’s system prompt:

1 self.system_prompt = ’You are ’ + self.name + ’, a citizen of

Princetonia. Your skill level is ’ + str(self.v) + ’ out of

159.1. ’\

2 ’ Each year you will have the option to choose the

number of hours of labor to perform. \

xlvii

3 You will receive income z proportional to the number

of hours worked and your skill level. \

4 Your goal is to maximize your ’ + utility_name + ’ u.

\

5 Make sure to sufficiently explore different amounts of

LABOR before exploiting the best one for maximum

utility u. \

6 Once you find the maximum utility , only output LABOR

corresponding to maximum utility u. \

7 Use the JSON format: {\" LABOR \": \"X\"} and replace \"

X\" with your answer .\n’

Code/worker sys prompt.py

The total prompt sent to the LLM is the user prompt followed by the system prompt. The

user prompt is the agent’s personal history, hi,t.

We focus on the last 10% of the timesteps in the simulation since the LLM is instructed

in the user prompt to switch to purely exploitation during the last 10% of the timesteps.

We can see that for an LLM tax planner, and two LLM workers, LLaMa comes very close

to the correct solution. While LLaMa touches on the correct value of 60, it is often at 65.

These results still gave us confidence in the LLM’s ability to solve for the correct solution.

6.2 Convergence and Simulation Size

Table 6.1 shows the number of steps required for convergence as we increase the number of

agents in the simulation [22].

xlviii

Table 6.1: Convergence for Di↵erent Numbers of Rational Workers

Number of Agents Convergence Steps

2 10

3 20

5 50

10 120

50 800

100 2000

6.3 Experiments

Having established in Section 6.1 that LLaMa can converge to Stackelberg equilibria, we ran

longer experiments with 100 agents. These longer runs allowed us to investigate how the

social welfare score of our learned tax policy in the rational scenario, democratic scenario,

and democratic scenario with platforms compares to Saez’s policy discussed in Section 3.3.1.

We also investigate whether di↵erent skill distributions a↵ect the resulting social welfare

score and learned tax policy.

6.3.1 Skill Distributions

We ran experiments with two distributions of skill levels: a uniform distribution over the

skill ranges of the first two income brackets, and an Generalized Beta of the Second Kind

(GB2) distribution with an upper bound of skill that equates to an initial income of $10

million.

Creating U.S. Income Distribution Feature

We matched the GB2 distribution to the income distribution of the United States based on

census data from the 2023 American Community Survey data from IPUMS USA. We tested

xlix

multiple distributions used to model income distributions, which can be seen in Figures 6.2

through 6.5.

Figure 6.2: GB2 Distribution

l

Figure 6.3: Gamma Distribution

Figure 6.4: Lognormal Distribution

li

Figure 6.5: Weibull Distribution

These distributions were evaluated by Akaike Information Criterion [AIC] [6] and in-

spection. An AIC score for a model is calculated from its number of independent variables

and maximum likelihood estimate (how likely it is for the model to produce the empirical

data). AIC is less a↵ected by issues like ties or huge sample sizes - common in income

distributions - compared to Kolmogorov-Smirnov (K-S) tests, which is also commonly used

to evaluate models [24]. The Generalized Beta of the Second Kind (GB2) distribution was

chosen because it had the lowest AIC score in Table 6.2. In our simulation, we divide the

samples from the GB2 distribution by 100 to transform the income number to a skill level,

si. We assume the fit of the GB2 distribution is su�cient to generate a set of agent skill

levels that mimics the U.S. Income distribution.

Table 6.2: AIC Comparison of Di↵erent Distributions

Distribution Gamma Weibull Log Normal GB2

AIC 5.78⇥ 10
9

5.78⇥ 10
9

5.80⇥ 10
9

5.76⇥ 10
9

lii

6.4 Results

We ran eight experiments with 100 agents each to compare the performance of a Saez

optimal tax policy with our learned tax policy, and to explore the emergent phenomena

created by di↵erent skill distributions. The social welfare and tax rate data from each

experiment is shown in Appendix C.1.4.

6.4.1 Social Welfare Scores

We use 0.05 exponential moving average smoothing on our social welfare data.

Uniform Distribution

Figure 6.6: Social Welfare

liii

Figure 6.7: Tax Rate for First Bracket

Figure 6.8: Tax Rate for Second Bracket

liv

Figure 6.9: Tax Rate for Top Bracket

U.S. Income Distribution

Figure 6.10: Social Welfare: U.S. Income Distribution

lv

Figure 6.11: Tax Rate for First Bracket

Figure 6.12: Tax Rate for Second Bracket

lvi

Figure 6.13: Tax Rate for Top Bracket

6.4.2 Comparing Saez’s Tax Policy To Our Learned Policies

For accurate analysis, we focus on the results from the last 250 timesteps, which is the 10%

of timesteps when the LLM agents are doing pure exploitation.

Uniform Distribution

We see that all of our learned policies across all three scenarios results in higher social

welfare than Saez’s policy. We note that our learned policies across all simulations runs

have higher first and top bracket tax rates than Saez’s policy while we learn a variety of

second bracket tax rates. Over the last 250 timesteps, we generally see the learned policy

from the democratic scenario with platforms result in higher social welfare than the rational

scenario, which results in higher social welfare than the democratic scenario.

U.S. Income Distribution

For the U.S income distribution, our learned policies also produce higher social welfare

scores in the last 250 timesteps than Saez’s policy. We generally see a high tax rate for

lvii

the first bracket from both our learned policy and Saez’s policy. We see significantly lower

learned tax rates for the second bracket than Saez’s policy, and significantly higher learned

tax rates for the top bracket than Saez’s policy. Over the last 250 timesteps, we see the

learned policy from the rational scenario finish with the highest social welfare, followed by

the democratic scenario with platforms, and then the democratic scenario.

E↵ect of Skill Distributions on Social Welfare and Policy

The social welfare scores for the U.S. income distribution are all significantly higher than

the uniform distribution. This is because the U.S. income distribution has individuals with

far higher skill levels than the uniform distribution. This leads to far greater revenue for

the government to redistribute to agents with lower incomes. This result demonstrates the

importance of highly skilled individuals in raising tax revenue.

We learn a “U-shaped” tax policy - characterized by higher marginal rates at low-

incomes and high incomes - for the uniform and U.S. income distributions. In comparison,

Saez’s policy for the uniform distribution has an approximately flat rate of tax for low and

middle incomes, and an extremely low rate of tax for high-earners. This shows that our

method learns a tax policy that avoids the result from Saez’s formulas that the tax rate

should be zero for the highest earner discussed in Section 3.2.3. Saez’s policy for the U.S.

income distribution also has an extremely low rate of tax for high-earners while increasing

the approximately flat rate of tax for low and middle incomes to extremely high rates.

Overall, we see that our learned policies and Saez’s policy follow the same general shape

regardless of the two skill distributions tested.

lviii

6.4.3 Elected Leaders in Democratic Scenario Experiments

Figure 6.14: Democratic Scenario: Uniform Distribution

Figure 6.15: Democratic Scenario: U.S. Income Distribution

lix

Figure 6.16: Democratic Scenario with Platforms: Uniform Distribution

Figure 6.17: Democratic Scenario with Platforms: U.S. Income Distribution

Figures 6.14 through 6.17 show that the platforms feature encouraged more exploration in

the worker agents’ choice of elected leaders. This result occurred in all of our test runs of

lx

democratic scenarios as well as our final experiments.

lxi

Chapter 7

Discussion

The results in Section 6.4 show a clear benefit to learning tax policies compared to Saez’s

tax policy in our simulation. We do not see a scenario - rational, democratic, or democratic

with platforms - that clearly outperforms the others. Considering that the addition of the

elections in the democratic scenarios and the addition of the platforms feature were imple-

mented to increase realism, it is positive to see that the additional complexity introduced

by those features did not result in a significant decrease in social welfare compared to the

rational scenario. This result demonstrates that the additional complexity did not push the

LLM past its ability to learn a good policy in a complicated optimization problem.

We established in Section 6.1 that LLMs have the ability to converge towards optimal

Stackelberg equilibria using in-context learning. We demonstrated the power of learned

policies to create higher social welfare than the policy produced by Saez’s optimal income

taxation formulas in simulations with 100 agents where calculating the Stackelberg equilib-

ria through backwards induction is intractable. The rapid advancement in LLM capabili-

ties promises significant improvements in the realism and accuracy of our simulation and

any economic simulations that incorporate LLMs. These economic simulations with LLMs

enable governments and economists to experiment extensively with policy alternatives, ad-

vancing both practical mechanism design and theoretical developments in optimal income

taxation theory.

We recognize that nuanced historical factors and interest groups influence real-world tax

lxii

policy. Furthermore, there is an ethical concern - discussed in Section 1.5 - in assuming that

LLMs accurately mimic human preferences. Yet, as fierce disagreement among economists

shows, optimal income taxation theory is far from a solved field. Ultimately, our work

is a meaningful advancement toward realistic, a↵ordable, and computationally accessible

methods for policy experimentation and mechanism design. By e↵ectively integrating LLMs

into economic modeling, this approach holds great promise for advancing optimal income

taxation theory and enhancing policy-making processes worldwide.

lxiii

Chapter 8

Future Work

8.1 Future Directions

We plan to explore a variety of new simulation scenarios in future work.

8.1.1 Influence of Utility Distributions

We plan to investigate the e↵ect of di↵erent agent utility mixes on social welfare. We plan

to investigate the e↵ect of agent utilities other than isoelastic for the worker agents and

social welfare for the planner agent. We could have a “greedy” tax planner that focused

on maximizing its own isoelastic utility when planning. We also could use “altruistic”

worker agents whose objective is positive social welfare, or “adversarial” worker agents

whose objective is negative social welfare. In this future work, we plan to investigate what

percentage of altruistic agents are needed to influence the group’s social welfare, and if there

is a mathematical relationship that we can establish between agent utility mixes and social

welfare. For the democratic scenario, can we learn a mathematical relationship between

utility mixes, social welfare, and election results? We can also ask questions about the rate

of convergence with di↵erent agent utility mixes.

lxiv

8.1.2 Multi-LLM Interactions

We plan to explore scenarios where multiple LLMs are used simultaneously within a single

simulation to evaluate emergent behaviors. Would one LLM be able to take advantage of a

less powerful LLM to increase the utility of the stronger LLM’s generative agent?

8.1.3 Multi-Agent Communication

We plan to implement communication channels between agents to see emergent interaction

patterns. This could involve agents exchanging messages to align on collective goals, ne-

gotiate trade-o↵s, or provide feedback on the tax planner’s policy. This future direction is

inspired by [15]. We want to know how information propagates through the simulation, and

how that information could a↵ect election results.

8.1.4 Extensions to Saez’s Optimal Income Taxation Theory

We plan to implement several extensions to Saez’s optimal income taxation formulas that

have been made to incorporate more elements of human economic activity. Future work

could add these features to our simulation with the goal of achieving more optimal tax

policies with these more complicated scenarios as well. Our simulation currently does not

consider migration e↵ects (explained in Appendix E.1.1) where agents can migrate between

tax jurisdictions. Future work could explore a multi-agent simulation with two competing

tax jurisdictions. We also do not currently incorporate tax avoidance responses (explained

in Appendix E.1.3), or rent seeking e↵ects (explained in Appendix E.1.4).

lxv

Appendix A

Engineering and Industrial

Standards

The independent project described in this thesis incorporated the following engineering and

industrial standards:

A.1 Programming Languages

• Python: A Python codebase was developed to run our multi-agent simulation

• R: Used to make plots

• LATEX: Used to write this thesis

A.2 Software

• Overleaf: Used to write my thesis

• slurm: Open-source job scheduler used to run experiments on Princeton’s Della HPC

A.2.1 Industry-Wide Accepted File Standards

• .txt: Used for various instructions and record-keeping

lxvi

• .csv: Used for containing U.S. Income Data, and samples from GB2 distribution

representing U.S. Income Data

A.2.2 Large Language Models

Open Source:

• llama3:8b: Used for the majority of testing and all final experiments

Closed Source:

• gpt-4o-mini-2024-07-18: Used for some small tests

A.3 Artifical Intelligence Ethical Standards

According to the standards established by ISO/IEC TR 24368:2022, we require anyone who

uses this system, a modification of it, or our results to be transparent about what model

they are using. Users must recognize that the preferences of di↵erent socioeconomic groups

are not necessarily evenly represented in LLMs’ training data. To use this simulation to

inform policy, we recommend an accountability framework that includes human oversight.

Users should establish a review process where tax policy experts validate model-generated

simulation results. Furthermore, they should include mechanisms for citizens to provide

feedback on how accurately their preferences are being modeled.

lxvii

lxviii

Appendix B

Ablations

B.1 One LLM Worker, Fixed Tax Planner

(a) Labor Worker 0, LLM (b) Labor Worker 1, Fixed

(c) Tax Rate for First Bracket, Fixed (d) Tax Rate for Second Bracket, Fixed

Figure B.1: Ablation Study Results: One LLM Worker, Fixed Tax Planner

lxix

Figure B.1 shows that when the tax planner’s rates are fixed to [100, 0] and one worker’s

labor output is fixed to 60, LLaMa found that the other worker’s optimal labor output to

maximize its isoelastic utility was 60, which matches the results of the Stackelberg equilibria.

Therefore, with one LLM worker, a fixed worker, and a fixed tax planner, we can see that

LLaMa finds the correct solution with a labor output of approximately 60 for the LLM

worker.

B.2 LLM Workers, Fixed Tax Planner

(a) Labor Worker 0, LLM (b) Labor Worker 1, LLM

(c) Tax Rate for First Bracket, Fixed (d) Tax Rate for Second Bracket, Fixed

Figure B.2: Ablation Study Results: LLM Workers, Fixed Tax Planner

We can see that for a fixed tax planner and two LLM workers, LLaMa still finds the correct

solution.

lxx

B.3 Fixed Workers, LLM Tax Planner

(a) Labor Worker 0, Fixed (b) Labor Worker 1, Fixed

(c) Tax Rate for First Bracket, LLM (d) Tax Rate for Second Bracket, LLM

Figure B.3: Ablation Study Results: Fixed Workers, LLM Tax Planner

We can see that for an LLM tax planner, and two fixed workers, LLaMa finds the correct

solution again.

lxxi

B.4 One LLM Worker, LLM Tax Planner

(a) Labor Worker 0, LLM (b) Labor Worker 1, Fixed

(c) Tax Rate for First Bracket, LLM (d) Tax Rate for Second Bracket, LLM

Figure B.4: Ablation Study Results: One LLM Worker, LLM Tax Planner

We can see that for an LLM tax planner, one fixed worker, and one LLM worker, LLaMa

finds the correct solution.

lxxii

Appendix C

Experiments

C.1 Data from 100 Agent Simulation Runs

Here is the social welfare and tax rate data from each of our eight 100 agent simulation

runs.

lxxiii

C.1.1 Saez Planner

Uniform Distribution

Figure C.1: Social Welfare Results

Figure C.2: Tax Rate for First Bracket

lxxiv

Figure C.3: Tax Rate for Second Bracket

Figure C.4: Tax Rate for Top Bracket

lxxv

U.S. Income Distribution

Figure C.5: Social Welfare Results

Figure C.6: Tax Rate for First Bracket

lxxvi

Figure C.7: Tax Rate for Second Bracket

Figure C.8: Tax Rate for Top Bracket

lxxvii

C.1.2 Rational Scenario

Uniform Distribution

Figure C.9: Social Welfare Results

Figure C.10: Tax Rate for First Bracket

lxxviii

Figure C.11: Tax Rate for Second Bracket

Figure C.12: Tax Rate for Top Bracket

lxxix

U.S. Income Distribution

Figure C.13: Social Welfare Results

Figure C.14: Tax Rate for First Bracket

lxxx

Figure C.15: Tax Rate for Second Bracket

Figure C.16: Tax Rate for Top Bracket

lxxxi

C.1.3 Democratic Scenario

Uniform Distribution

Figure C.17: Social Welfare Results

Figure C.18: Tax Rate for First Bracket

lxxxii

Figure C.19: Tax Rate for Second Bracket

Figure C.20: Tax Rate for Top Bracket

lxxxiii

U.S. Income Distribution

Figure C.21: Social Welfare Results

Figure C.22: Tax Rate for First Bracket

lxxxiv

Figure C.23: Tax Rate for Second Bracket

Figure C.24: Tax Rate for Top Bracket

lxxxv

C.1.4 Democratic Scenario with Platforms Feature

Uniform Distribution

Figure C.25: Social Welfare Results

Figure C.26: Tax Rate for First Bracket

lxxxvi

Figure C.27: Tax Rate for Second Bracket

Figure C.28: Tax Rate for Top Bracket

lxxxvii

U.S. Income Distribution

Figure C.29: Social Welfare Results

Figure C.30: Tax Rate for First Bracket

lxxxviii

Figure C.31: Tax Rate for Second Bracket

Figure C.32: Tax Rate for Top Bracket

lxxxix

Appendix D

Derivation of Optimal Income Tax

for Utilitarian Social Welfare Using

Simple Model without Behavior

Response

max
T (z)

Z 1

0
u(c)h(z)dz =

Z 1

0
u(z � T (z))h(z)dz (D.1)

subject to the constraint

Z 1

0
T (z)h(z)dz � E (D.2)

To solve this constrained optimization problem, we use the Lagrangian method. The La-

grangian combines the objective function and the constraint using a Lagrange multiplier

�:

L = Objective + � · (LHS of constraint� RHS of constraint)

Rewriting the constraint as
R1
0 T (z)h(z)dz � E � 0, the Lagrangian becomes:

xc

L =

Z 1

0
u(z � T (z))h(z)dz + �

✓Z 1

0
T (z)h(z)dz � E

◆

Combining the integrals:

L =

Z 1

0
[u(z � T (z)) + � · T (z)]h(z)dz � �E

Since �E is a constant term that doesn’t a↵ect the maximization of the objective with

respect to T (z), it is dropped from the Lagrangian:

L =

Z 1

0
[u(z � T (z)) + � · T (z)]h(z)dz

The integrand can be used as L(z), allowing the maximization of the objective with

respect to every z:

L(z) = [u(z � T (z)) + � · T (z)] · h(z)

To find the optimal tax function, we di↵erentiate the Lagrangian with respect to T (z)

and set it equal to zero:

@L
@T (z)

=
@

@T (z)
[u(z � T (z)) + � · T (z)] · h(z) = 0

We evaluate each term separately:

1. For the utility term, we apply the chain rule since u(z � T (z)) is a composition of

functions:

@u(z � T (z))

@T (z)
= u0(z � T (z)) · @(z � T (z))

@T (z)

Since z is a constant with respect to T (z):

@(z � T (z))

@T (z)
= 0� 1 = �1

xci

Therefore:

@u(z � T (z))

@T (z)
= u0(z � T (z)) · (�1) = �u0(z � T (z))

2. For the second term:

@(� · T (z))
@T (z)

= �

Combining these results, the first-order condition becomes:

[�u0(z � T (z)) + �] · h(z) = 0

Since h(z) > 0 (as it is a probability density function), we can divide by h(z) to get:

�u0(z � T (z)) + � = 0

Rearranging to solve for the utility yields:

u0(z � T (z)) = �

xcii

Appendix E

Extensions to Saez’s Optimal

Income Taxation Formulas

E.1 Extensions

Mirrlees and Saez’s work have been extended to incorporate more elements of human eco-

nomic activity. These extensions are summarized by [41]

E.1.1 Migration E↵ects

When agents can migrate between jurisdictions:

• Migration responds to average - not marginal - tax rates

• For a linear tax with migration elasticity ēA, the optimal top tax rate becomes:

⌧ =
1

1 + a · e+ ēA
(E.1)

xciii

E.1.2 Coordinated Tax Policy with Migration

For coordinated tax policy across regions A and B with di↵erent taxes ⌧A and ⌧B:

⌧A =
1� gA � ⌧BeBA · yB/yA

1� gA + eA
(E.2)

Where eBA is the cross-elasticity of migration.

E.1.3 Tax Avoidance Responses

If a fraction s of the response to taxation is due to avoidance that shifts income to a

population taxed at rate t:

⌧ =
1 + a · t · s · e

1 + a · e (E.3)

E.1.4 Rent-Seeking E↵ects

When top earners receive rents rather than produce goods:

⌧⇤ =
1 + a · eb
1 + a · e = 1� a(y/z)ey

1 + a · e (E.4)

Where eb is the bargaining elasticity component and ey is the real labor supply elasticity.

xciv

Appendix F

Code

All of our simulation code will be released for NeurIPS 2025.

Code: github.com/sethkarten/LLM-Economist

F.1 stackelberg calc.py

For reference, here is our code that calculates the Stackelberg equilibria for a given set of

agents’ skills through a grid-search implementation of backwards induction.

1 from worker import FixedWorker

2 from planner import FixedTaxPlanner

3 import argparse

4 import numpy as np

5 import sys

6 from itertools import product

7 from tqdm import tqdm

8

9 def main_loop(args):

10

11

12 # init tax planner

xcv

https://github.com/sethkarten/LLM-Economist

13 tax_planner = FixedTaxPlanner(’Joe’, ’SAETZ_TWO ’,

history_len=args.history_len , args=args)

14 # init N workers

15 num_agents = args.num_agents

16 num_brackets = 2

17 agents = [] # list of worker agents

18 # skills = [87.876 ,114.14 ,96.392]

19 skills = [25 ,50 ,75]

20 # skills =

[87.87569972996748 ,114.13979337555013 ,96.39222654666969 ,87.25525926789012 ,68.11814662363949]

21 for i in range(num_agents):

22 name = "worker_" + str(i)

23 agent = FixedWorker(name , history_len=args.

two_timescale //2, skill=skills[i], args=args)

24 agents.append(agent)

25

26 tuple_rates_labor = (11,) * (num_brackets+num_agents)

27 tuple_rates_labor_agents = (11,) * (num_brackets+

num_agents)

28 tuple_rates_labor_agents += (num_agents ,)

29 utility = np.zeros(tuple_rates_labor_agents)

30 swf_arr = np.zeros(tuple_rates_labor)

31 tuple_rates_labor_rates = (11,) * (num_brackets+num_agents

)

32 tuple_rates_labor_rates += (num_brackets ,)

33 tax_arr = np.zeros(tuple_rates_labor_rates)

34 tax_rates = None

35 for i in range(num_agents):

xcvi

36 print(f’agent {i} skill: {agents[i].v}’)

37 # for worker_labor_arr , _ in np.ndenumerate ([11]*

num_agents *2):

38 for tax_rate_arr in tqdm(list(product(range (11), repeat=

num_brackets))):

39 for k, worker_labor_arr in enumerate(list(product(

range (11), repeat=num_agents))):

40 if args.debug: print("TIMESTEP", k)

41 logger = {}

42 # get new tax rates

43 tax_rates = np.array(tax_rate_arr) * 10

44 tax_rates = tax_rates.tolist ()

45 tax_planner.tax_rates = tax_rates

46

47 # calculate labor based on taxes

48 for i in range(num_agents):

49 agents[i].l = worker_labor_arr[i] * 10

50 agents[i].z = agents[i].l * agents[i].v

51

52 # calculate taxes

53 pre_tax_incomes = [agents[i].z for i in range(

num_agents)]

54 post_tax_incomes , total_tax = tax_planner.

apply_taxes(tax_rates , pre_tax_incomes)

55 tax_indv = np.array(pre_tax_incomes) - np.array(

post_tax_incomes)

56

57 # calculate agent utility

58 for i in range(num_agents):

xcvii

59 agents[i].tax = tax_indv[i]

60 agents[i]. update_utility(k, post_tax_incomes[i

], total_tax / num_agents)

61 agents[i]. log_stats(k, logger , debug=args.

debug)

62 u = [agents[i]. utility for i in range(num_agents)]

63 for i in range(num_agents):

64 utility[tuple(tax_rate_arr)][tuple(

worker_labor_arr)][i] = agents[i]. utility

65 for i in range(len(tax_rates)):

66 tax_arr[tuple(tax_rate_arr)][tuple(

worker_labor_arr)][i] = tax_rates[i]

67 tax_planner.log_stats(k, logger , z=pre_tax_incomes

, u=u, debug=args.debug)

68 swf_arr[tuple(tax_rate_arr)][tuple(

worker_labor_arr)] = tax_planner.swf

69

70 # find highest utility for each tax bracket for each agent

71 tuple_utility_best = (11,) * (num_brackets)

72 tuple_utility_best += (-1,num_agents)

73 utility_arg_best = utility.reshape ((tuple_utility_best)).

argmax(axis=-2)

74 if args.debug: print(’\n\n\n\nUTILITY ’)

75 if args.debug: print(utility_arg_best)

76 if args.debug: print(utility_arg_best.shape)

77 # recover

78 coords = []

79 for i in range(num_agents):

80 if i == num_agents - 1:

xcviii

81 arr = utility_arg_best % 11

82 else:

83 arr = (utility_arg_best // int (11**(num_agents -1 -

i))) % 11

84 arr = arr[...,i] # select coords for specific agent

corresponding to their labor choice

85 coords.append(arr)

86 coords = np.array(coords)

87 if args.debug: print(coords.shape)

88 coords_tuple = ()

89 for i in range(1,len(coords.shape)):

90 coords_tuple += (i,)

91 coords_tuple += (0,)

92 if args.debug: print(coords_tuple)

93 coords = np.transpose(coords , coords_tuple)

94

95 # get optimal swf

96 tuple_swf_best = (11,) * (num_brackets)

97 swf_opt = np.zeros(tuple_swf_best)

98 tuple_swf_best_agents = tuple_swf_best

99 tuple_swf_best_agents += (num_agents ,)

100 labor_opt = np.zeros(tuple_swf_best_agents)

101 rate_opt = np.zeros(tuple_swf_best)

102 for tax_rate_arr in list(product(range (11), repeat=

num_brackets)):

103 swf_opt[tuple(tax_rate_arr)] = swf_arr[tuple(

tax_rate_arr)][tuple(coords[tuple(tax_rate_arr)])]

104 labor_opt[tuple(tax_rate_arr)] = coords[tuple(

tax_rate_arr)]

xcix

105 if args.debug: print(’\n\n\n\n’)

106 if args.debug: print(labor_opt)

107 swf_max_arg = np.unravel_index(np.argmax(swf_opt), swf_opt

.shape)

108 if args.debug: print(swf_max_arg)

109 swf_best = swf_opt[swf_max_arg]

110 print(’s’, ((swf_opt / swf_best) * 100).tolist ())

111 print(’s’, (swf_opt).tolist ())

112 # get best rates

113 rates_best = np.array(swf_max_arg) * 10

114 # get optimal labor

115 labor_best = labor_opt[swf_max_arg] * 10

116 # np.set_printoptions(threshold=sys.maxsize)

117

118 if args.debug: print(labor_best)

119 if args.debug: print(swf_best)

120

121 tax_rates = np.array(rates_best)

122 tax_rates = tax_rates.tolist ()

123 tax_planner.tax_rates = tax_rates

124

125 # calculate labor based on taxes

126 for i in range(num_agents):

127 agents[i].l = int(labor_best[i])

128 agents[i].z = agents[i].l * agents[i].v

129

130 # calculate taxes

131 pre_tax_incomes = [agents[i].z for i in range(num_agents)]

132 post_tax_incomes , total_tax = tax_planner.apply_taxes(

c

tax_rates , pre_tax_incomes)

133 tax_indv = np.array(pre_tax_incomes) - np.array(

post_tax_incomes)

134

135 # calculate agent utility

136 for i in range(num_agents):

137 agents[i].tax = tax_indv[i]

138 agents[i]. update_utility (0, post_tax_incomes[i],

total_tax / num_agents)

139 u = [agents[i]. utility for i in range(num_agents)]

140 print(f’done:\nswf: {swf_best }\ntax rates: {rates_best }\

nlabor: {labor_best }\ nutility: {u}’)

141 return np.array(rates_best), np.array(swf_best), np.array(

labor_best), np.array(u)

142

143 def analyze_rates(args , worker_labor_arr):

144 assert args.num_agents == len(worker_labor_arr)

145

146 # init tax planner

147 tax_planner = FixedTaxPlanner(’Joe’, ’SAETZ_TWO ’,

history_len=args.history_len , args=args)

148 # init N workers

149 num_agents = args.num_agents

150 num_brackets = 2

151 agents = [] # list of worker agents

152 skills = [25 ,50 ,75]

153 # skills = [87.876 ,114.14 ,96.392]

154 for i in range(num_agents):

155 name = "worker_" + str(i)

ci

156 agent = FixedWorker(name , history_len=args.

two_timescale //2, skill=skills[i], args=args)

157 agents.append(agent)

158

159 tuple_rates_labor = (11,) * (num_brackets+num_agents)

160 tuple_rates_labor_agents = (11,) * (num_brackets+

num_agents)

161 tuple_rates_labor_agents += (num_agents ,)

162 utility = np.zeros(tuple_rates_labor_agents)

163 swf_arr = np.zeros(tuple_rates_labor)

164 tuple_rates_labor_rates = (11,) * (num_brackets+num_agents

)

165 tuple_rates_labor_rates += (num_brackets ,)

166 tax_arr = np.zeros(tuple_rates_labor_rates)

167 tax_rates = None

168 # for worker_labor_arr , _ in np.ndenumerate ([11]*

num_agents *2):

169 k = 0

170 for tax_rate_arr in list(product(range (11), repeat=

num_brackets)):

171 logger = {}

172 # get new tax rates

173 tax_rates = np.array(tax_rate_arr) * 10

174 tax_rates = tax_rates.tolist ()

175 tax_planner.tax_rates = tax_rates

176

177 # calculate labor based on taxes

178 for i in range(num_agents):

179 agents[i].l = np.array(worker_labor_arr[i]) * 10

cii

180 agents[i].z = agents[i].l * agents[i].v

181

182 # calculate taxes

183 pre_tax_incomes = [agents[i].z for i in range(

num_agents)]

184 post_tax_incomes , total_tax = tax_planner.apply_taxes(

tax_rates , pre_tax_incomes)

185 tax_indv = np.array(pre_tax_incomes) - np.array(

post_tax_incomes)

186

187 # calculate agent utility

188 for i in range(num_agents):

189 agents[i].tax = tax_indv[i]

190 agents[i]. update_utility(k, post_tax_incomes[i],

total_tax / num_agents)

191 agents[i]. log_stats(k, logger , debug=args.debug)

192 u = [agents[i]. utility for i in range(num_agents)]

193 for i in range(num_agents):

194 utility[tuple(tax_rate_arr)][tuple(

worker_labor_arr)][i] = agents[i]. utility

195 for i in range(len(tax_rates)):

196 tax_arr[tuple(tax_rate_arr)][tuple(

worker_labor_arr)][i] = tax_rates[i]

197 tax_planner.log_stats(k, logger , z=pre_tax_incomes , u=

u, debug=args.debug)

198 swf_arr[tuple(tax_rate_arr)][tuple(worker_labor_arr)]

= tax_planner.swf

199

200 # find highest utility for each tax bracket for each agent

ciii

201 tuple_utility_best = (11,) * (num_brackets)

202 tuple_utility_best += (-1,num_agents)

203 utility_arg_best = utility.reshape ((tuple_utility_best)).

argmax(axis=-2)

204 if args.debug: print(’\n\n\n\nUTILITY ’)

205 if args.debug: print(utility_arg_best)

206 if args.debug: print(utility_arg_best.shape)

207 # recover

208 coords = []

209 for i in range(num_agents):

210 if i == num_agents - 1:

211 arr = utility_arg_best % 11

212 else:

213 arr = (utility_arg_best // int (11**(num_agents -1 -

i))) % 11

214 arr = arr[...,i] # select coords for specific agent

corresponding to their labor choice

215 coords.append(arr)

216 coords = np.array(coords)

217 if args.debug: print(coords.shape)

218 coords_tuple = ()

219 for i in range(1,len(coords.shape)):

220 coords_tuple += (i,)

221 coords_tuple += (0,)

222 if args.debug: print(coords_tuple)

223 coords = np.transpose(coords , coords_tuple)

224

225 # get optimal swf

226 tuple_swf_best = (11,) * (num_brackets)

civ

227 swf_opt = np.zeros(tuple_swf_best)

228 tuple_swf_best_agents = tuple_swf_best

229 tuple_swf_best_agents += (num_agents ,)

230 labor_opt = np.zeros(tuple_swf_best_agents)

231 rate_opt = np.zeros(tuple_swf_best)

232 for tax_rate_arr in list(product(range (11), repeat=

num_brackets)):

233 swf_opt[tuple(tax_rate_arr)] = swf_arr[tuple(

tax_rate_arr)][tuple(coords[tuple(tax_rate_arr)])]

234 labor_opt[tuple(tax_rate_arr)] = coords[tuple(

tax_rate_arr)]

235 if args.debug: print(’\n\n\n\n’)

236 if args.debug: print(labor_opt)

237 swf_max_arg = np.unravel_index(np.argmax(swf_opt), swf_opt

.shape)

238 if args.debug: print(swf_max_arg)

239 swf_best = swf_opt[swf_max_arg]

240 # print(’s’, ((swf_opt / swf_best) * 100).tolist ())

241 # get best rates

242 rates_best = np.array(swf_max_arg) * 10

243 # get optimal labor

244 labor_best = labor_opt[swf_max_arg] * 10

245 # np.set_printoptions(threshold=sys.maxsize)

246

247 if args.debug: print(labor_best)

248 if args.debug: print(swf_best)

249

250 tax_rates = np.array(rates_best) / 10

251 tax_rates = tax_rates.tolist ()

cv

252 tax_planner.tax_rates = tax_rates

253

254 # calculate labor based on taxes

255 for i in range(num_agents):

256 agents[i].l = np.array(labor_best[i])

257 agents[i].z = agents[i].l * agents[i].v

258

259 # calculate taxes

260 pre_tax_incomes = [agents[i].z for i in range(num_agents)]

261 post_tax_incomes , total_tax = tax_planner.apply_taxes(

tax_rates , pre_tax_incomes)

262 tax_indv = np.array(pre_tax_incomes) - np.array(

post_tax_incomes)

263

264 # calculate agent utility

265 for i in range(num_agents):

266 agents[i].tax = tax_indv[i]

267 agents[i]. update_utility(k, post_tax_incomes[i],

total_tax / num_agents)

268 u = [agents[i]. utility for i in range(num_agents)]

269 # print(f’done {worker_labor_arr }:\ nswf: {swf_best }\ntax

rates: {rates_best }\ nlabor: {labor_best }\ nutility: {u

}’)

270 return np.array(rates_best), np.array(swf_best), np.array(

labor_best), np.array(u)

271

272 def output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , rates , args):

273 rates_best_fixed_l , swf_max_fixed_l , labor ,

cvi

utility_fixed_l = analyze_rates(args , rates)

274 print(f"labor {labor }\ nrates: {rates_best_fixed_l }\n% of

max:\nswf: {np.around(swf_max_fixed_l/ swf_max * 100,

2)}\ nutility: {np.around(utility_fixed_l/utility_max

*100, 2)}")

275 print ()

276

277 if __name__ == ’__main__ ’:

278 parser = argparse.ArgumentParser(description=’Simulation

stats’)

279 parser.add_argument(’--num -agents ’, type=int , default =2)

280 parser.add_argument(’--planner -type’, default=’LLM’,

choices =[’LLM’, ’US_FED ’, ’SAETZ’, ’SAETZ_TWO ’])

281 parser.add_argument(’--max -timesteps ’, type=int , default

=100)

282 parser.add_argument(’--history -len’, type=int , default =20)

283 parser.add_argument(’--two -timescale ’, type=int , default

=20)

284 parser.add_argument(’--debug’, type=bool , default=False)

285 parser.add_argument(’--bracket_setting ’, default=’two’,

choices =[’two’, ’US_FED ’])

286 args = parser.parse_args ()

287 print(args)

288 np.random.seed (0)

289 rates_best_equilibria , swf_max , labor_best_equilibria ,

utility_max = main_loop(args)

290 # analyze_rates(args , [])

291 output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [4, 5, 6], args)

cvii

292 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [5,7,6], args)

293 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [7,7,6], args)

294

295 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [6,7,6], args)

296 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [6,6,6], args)

297 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [6,8,6], args)

298

299 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [6,7,6], args)

300 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [6,7,7], args)

301 # output_best(rates_best_equilibria , swf_max ,

labor_best_equilibria , utility_max , [6,7,5], args)

Code/saetz–calc.py

F.2 saez.py

For reference, here is our function that calculates a tax policy from Saez’s optimal income

taxation formulas.

1 def saez_optimal_tax_rates(skills , brackets , elasticities):

2 """

3 Calculate Saez optimal marginal tax rates for income

brackets based on skills.

cviii

4

5 Parameters:

6 -----------

7 skills : list of float

8 List of individual skills (incomes /100).

9 brackets : list of float

10 List of income -cutoff points [min1 , min2 , ...,

max_value];

11 each consecutive pair defines one bracket.

12 elasticities : float or list of float

13 If a single float: apply this elasticity to every

bracket.

14 If a list: must have length = (number of brackets), i.

e. len(brackets) -1,

15 giving one elasticity per bracket.

16

17 Returns:

18 --------

19 tax_rates : list of float

20 Optimal marginal tax rates for each bracket , in

percentages

21 (e.g., [12.88 , 3.23, 3.23]).

22 """

23 # Convert skills to incomes

24 incomes = np.array(skills) * 100.0

25 brackets = np.array(brackets)

26

27 # Build elasticity list

28 n_brackets = len(brackets) - 1

cix

29 if isinstance(elasticities , (int , float)):

30 elasticities = [float(elasticities)] * n_brackets

31 else:

32 if len(elasticities) != n_brackets:

33 raise ValueError(f"elasticities must be length {

n_brackets}, got {len(elasticities)}")

34 elasticities = [float(e) for e in elasticities]

35

36 # Sort incomes and compute welfare weights

37 incomes = np.sort(incomes)

38 welfare_weights = 1.0 / np.maximum(incomes , 1e-10)

39 welfare_weights /= welfare_weights.sum()

40

41 # Estimate density

42 kde = stats.gaussian_kde(incomes)

43

44 tax_rates = []

45 for i in range(n_brackets):

46 bracket_start , bracket_end = brackets[i], brackets[i

+1]

47 # choose z at midpoint (or near start for top bracket)

48 if i < n_brackets - 1:

49 z = 0.5 * (bracket_start + bracket_end)

50 else:

51 z = bracket_start + 0.1 * (bracket_end -

bracket_start)

52

53 F_z = np.mean(incomes <= z)

54 f_z = kde(z)[0]

cx

55

56 # Pareto -tail parameter a(z)

57 if F_z < 1.0:

58 a_z = (z * f_z) / (1.0 - F_z)

59 else:

60 a_z = 10.0

61

62 # for the top bracket refine a(z)

63 incomes_above = incomes[incomes >= z]

64 if i == n_brackets - 1 and incomes_above.size > 0:

65 m = incomes_above.mean()

66 a_z = m / (m - bracket_start)

67

68 # G(z): average welfare weight above z, normalized

69 if incomes_above.size > 0 and F_z < 1.0:

70 G_z = welfare_weights[incomes >= z].sum() / (1.0 -

F_z)

71 else:

72 G_z = 0.0

73

74 # pick the right elasticity for this bracket

75 " = elasticities[i]

76

77 # Saez optimal rate ⌧ = (1 - G) / [1 - G + a * "]

78 tau = (1.0 - G_z) / (1.0 - G_z + a_z * ")

79 tau = max(0.0, min(1.0, tau))

80

81 tax_rates.append(round(tau * 100, 2))

82

cxi

83 return tax_rates

Code/saez.py

cxii

Bibliography

[1] K. Armstrong. The WEIRD Science of Culture, Values, and Behavior. APS Observer,

31, Mar. 2018.

[2] A. Atkinson and J. Stiglitz. The design of tax structure: Direct versus indirect taxation.

Journal of Public Economics, 6(1-2):55–75, July 1976.

[3] AWS. What is Batch Processing? - Batch Processing Systems Explained - AWS.

https://aws.amazon.com/what-is/batch-processing/?utm source=chatgpt.com.

[4] X. Bai, A. Wang, I. Sucholutsky, and T. L. Gri�ths. Measuring Implicit Bias in

Explicitly Unbiased Large Language Models, May 2024.

[5] Tamer. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic

Press, London ;, 2nd ed. edition, 1995.

[6] R. Bevans. Akaike Information Criterion | When & How to Use It (Example), Mar.

2020.

[7] G. Brero, A. Eden, D. Chakrabarti, M. Gerstgrasser, A. Greenwald, V. Li, and D. C.

Parkes. Stackelberg POMDP: A Reinforcement Learning Approach for Economic De-

sign, July 2024. arXiv:2210.03852 [cs].

[8] G. Brero, N. Lepore, E. Mibuari, and D. C. Parkes. Learning to Mitigate AI Collusion

on Economic Platforms, June 2022. arXiv:2202.07106 [cs].

[9] D. Bunn and C. Weigel. Sources of U.S. Tax Revenue by Tax Type, 2024, Mar. 2024.

cxiii

[10] S. Clarke, G. Dragotto, J. F. Fisac, and B. Stellato. Learning Rationality in Potential

Games. In 2023 62nd IEEE Conference on Decision and Control (CDC), pages 4261–

4266, Dec. 2023.

[11] P. A. Diamond and E. Saez. The Case for a Progressive Tax: From Basic Research to

Policy Recommendations. SSRN Electronic Journal, 2011.

[12] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu, T. Liu, B. Chang,

X. Sun, L. Li, and Z. Sui. A Survey on In-context Learning, Oct. 2024.

[13] P. Duetting, V. Mirrokni, R. P. Leme, H. Xu, and S. Zuo. Mechanism Design for Large

Language Models, July 2024. arXiv:2310.10826 [cs].

[14] C. Ford. Understanding QQ Plots | UVA Library, Aug. 2015.

[15] J. Gao, H. Xu, and L. Dao. Multi-Generative Agent Collective Decision-Making in

Urban Planning: A Case Study for Kendall Square Renovation, Feb. 2024.

[16] A. Goli and A. Singh. Frontiers: Can Large Language Models Capture Human Pref-

erences? Marketing Science, 43(4):709–722, July 2024.

[17] J. Gruber and E. Saez. The Elasticity of Taxable Income: Evidence and Implications.

NBER WORKING PAPER SERIES, Jan. 2000.

[18] D. Henderson. James A. Mirrlees - Econlib.

[19] IRS. Earned Income Tax Credit (EITC) | Internal Revenue Service, 2024.

[20] M. Jain, F. Ordóñez, J. Pita, C. Portway, M. Tambe, C. Western, P. Paruchuri, and

S. Kraus. Robust Solutions in Stackelberg Games: Addressing Boundedly Rational

Human Preference Models. Association for the Advancement of Artificial Intelligence,

2008.

[21] R. Johari. Stackelberg Games, 2007.

[22] S. Karten, W. Li, Z. Ding, Y. Bai, and C. Jin. The LLM Economist: Optimizing Policy

in Multiagent Generative Simulations.

cxiv

[23] LADWP. Commercial Electric Rates | Los Angeles Department of Water

and Power. https://www.ladwp.com/account/understanding-your-rates/commercial-

electric-rates.

[24] S. Lee. Kolmogorov-Smirnov Test Explained: 6 Essential Facts for Data Experts, Mar.

2025.

[25] J. Lidard, H. Hu, A. Hancock, Z. Zhang, A. Contreras, V. Modi, J. DeCastro,

D. Gopinath, G. Rosman, N. Leonard, M. Santos, and J. Fisac. Blending Data-Driven

Priors in Dynamic Games. In Robotics: Science and Systems XX. Robotics: Science

and Systems Foundation, July 2024.

[26] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-Agent Actor-

Critic for Mixed Cooperative-Competitive Environments, Mar. 2020.

[27] R. E. Lucas. ECONOMETRIC POEICY EVALUATION: A CRITIQUE. Carnegie-

Rochester Conference Series on Public Policy, 1:19–46, 1976.

[28] A. Marchesi. Leadership Games: Multiple Followers, Multiple Leaders, and Perfection.

In A. Geraci, editor, Special Topics in Information Technology, pages 107–118. Springer

International Publishing, Cham, 2021.

[29] J. McCarty and L. J. Shrum. The Role of Personal Values and Demographics in

Predicting Television Viewing Behavior: Implications for Theory and Application on

JSTOR. Journal of Advertising, 22, Dec. 1993.

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean. E�cient Estimation of Word Repre-

sentations in Vector Space, Sept. 2013.

[31] J. A. Mirrlees. An Exploration in the Theory of Optimum Income Taxation. The

Review of Economic Studies, 38(2):175–208, Apr. 1971.

[32] G. Monea, A. Bosselut, K. Brantley, and Y. Artzi. LLMs Are In-Context Reinforcement

Learners, Oct. 2024.

cxv

[33] T. Nakamura. One-leader and multiple-follower Stackelberg games with private infor-

mation. Economics Letters, 127:27–30, Feb. 2015.

[34] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Gen-

erative Agents: Interactive Simulacra of Human Behavior. In Proceedings of the 36th

Annual ACM Symposium on User Interface Software and Technology, pages 1–22, San

Francisco CA USA, Oct. 2023. ACM.

[35] T. Piketty, E. Saez, and S. Stantcheva. Optimal Taxation of Top Labor Incomes: A

Tale of Three Elasticities. NATIONAL BUREAU OF ECONOMIC RESEARCH, Nov.

2011.

[36] A. Rees-Jones and D. Taubinsky. Taxing Humans: Pitfalls of the Mechanism Design

Approach and Potential Resolutions. Tax Policy and the Economy, 33(1):107–133,

2018.

[37] A. Reynolds. Optimal Top Tax Rates: A Review and Critique. Cato Journal, 39(3),

Sept. 2019.

[38] E. Saez. Using Elasticities to Derive Optimal Income Tax Rates. The Review of

Economic Studies, 68, 2001.

[39] E. Saez and S. Stantcheva. A simpler theory of optimal capital taxation. Journal of

Public Economics, 162:120–142, June 2018.

[40] J. Seade. On the shape of optimal tax schedules. Journal of Public Economics,

7(2):203–235, Apr. 1977.

[41] S. Stantcheva. Optimal Income Taxation, 2022.

[42] A. Storkey, J. Millin, and K. Geras. Isoelastic Agents and Wealth Updates in Machine

Learning Markets, Sept. 2012.

[43] G. Suri, L. R. Slater, A. Ziaee, and M. Nguyen. Do Large Language Models Show

Decision Heuristics Similar to Humans? A Case Study Using GPT-3.5, May 2023.

arXiv:2305.04400 [cs].

cxvi

[44] L. Tjuatja, V. Chen, T. Wu, A. Talwalkwar, and G. Neubig. Do LLMs Exhibit Human-

like Response Biases? A Case Study in Survey Design. Transactions of the Association

for Computational Linguistics, 12:1011–1026, Sept. 2024.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention Is All You Need, Aug. 2023.

[46] H. Von Stackelberg. Market Structure and Equilibrium. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011.

[47] J. Wei, J. Wei, Y. Tay, D. Tran, A. Webson, Y. Lu, X. Chen, H. Liu, D. Huang,

D. Zhou, and T. Ma. Larger language models do in-context learning di↵erently, Mar.

2023.

[48] J. Wu, W. Shen, F. Fang, and H. Xu. Inverse Game Theory for Stackelberg Games:

The Blessing of Bounded Rationality, Oct. 2022.

[49] M. Yildiz. 14.12 Game Theory Lecture Notes⇤ Lectures 7-9.

[50] S. Yousefi, L. Betthauser, H. Hasanbeig, R. Millière, and I. Momennejad. Decod-

ing In-Context Learning: Neuroscience-inspired Analysis of Representations in Large

Language Models, Feb. 2024.

[51] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The Surprising

E↵ectiveness of PPO in Cooperative, Multi-Agent Games, Nov. 2022.

[52] S. Zheng, A. Trott, S. Srinivasa, N. Naik, M. Gruesbeck, D. C. Parkes, and R. Socher.

The AI Economist: Improving Equality and Productivity with AI-Driven Tax Policies,

Apr. 2020.

[53] S. Zheng, A. Trott, S. Srinivasa, D. C. Parkes, and R. Socher. The AI Economist:

Taxation policy design via two-level deep multiagent reinforcement learning. Science

Advances, May 2022.

cxvii

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	The Problem
	Why LLMs
	Related Work
	Simulating Human Believable Agents
	The Integration of Artificial Intelligence into Economics
	Modeling Noisily Rational Human Behavior
	Inverse Game Theory
	Using LLMs to Find the Optimal Income Tax
	Why Simulate Agent Responses to Income Tax: Atkinson-Stiglitz Theorem

	Novel Contributions
	Challenges and Considerations
	Thesis Organization

	Stackelberg Game Theory
	Infinite Leader-Follower Games
	Threat or Reward Strategies

	Mechanism Design and Policy
	Stackelberg Game
	Stackelberg Equilibria

	Optimal Income Taxation Theory
	Simple Model with No Behavioral Responses
	Framework
	Utilitarian Optimization
	Solution

	The Mirrlees Model
	Framework
	Social Welfare Maximization
	Key Results from Mirrlees

	Saez's Framework
	Saez's Optimal Income Taxation Formulas
	Calculating a Saez Optimal Tax Policy
	Susceptibility to Lucas Critique

	Isoelastic Utility
	Calculation of Social Welfare Metric

	Large Language Models and In-Context Learning
	Large Language Model
	Attention, Transformers, and Decoder-Only Models
	In-Context Learning

	Methodology
	Algorithm Pseudocode
	Agent Objectives: Utility Functions
	Worker Objective: Isoelastic Utility
	Tax Planner Objective: Social Welfare Function Utility

	Scenarios
	Rational Scenario
	Democratic Scenario
	Mathematical Formulation for all Scenarios
	Rational Scenario: Game Framework
	Rational Scenario Diagrams
	Democratic Scenario: Game Framework
	Democratic Scenario Diagram

	Results
	Ablations
	LLM Workers, LLM Tax Planner

	Convergence and Simulation Size
	Experiments
	Skill Distributions

	Results
	Social Welfare Scores
	Comparing Saez's Tax Policy To Our Learned Policies
	Elected Leaders in Democratic Scenario Experiments

	Discussion
	Future Work
	Future Directions
	Influence of Utility Distributions
	Multi-LLM Interactions
	Multi-Agent Communication
	Extensions to Saez's Optimal Income Taxation Theory

	Engineering and Industrial Standards
	Programming Languages
	Software
	Industry-Wide Accepted File Standards
	Large Language Models

	Artifical Intelligence Ethical Standards

	Ablations
	One LLM Worker, Fixed Tax Planner
	LLM Workers, Fixed Tax Planner
	Fixed Workers, LLM Tax Planner
	One LLM Worker, LLM Tax Planner

	Experiments
	Data from 100 Agent Simulation Runs
	Saez Planner
	Rational Scenario
	Democratic Scenario
	Democratic Scenario with Platforms Feature

	Derivation of Optimal Income Tax for Utilitarian Social Welfare Using Simple Model without Behavior Response
	Extensions to Saez's Optimal Income Taxation Formulas
	Extensions
	Migration Effects
	Coordinated Tax Policy with Migration
	Tax Avoidance Responses
	Rent-Seeking Effects

	Code
	stackelberg_calc.py
	saez.py

