
Generalizing Multi-Agent Reinforcement

Learning: Advancing RPM

Samuel Kleiner and Zachary Vachal

Professors: Mengdi Wang and Benjamin Eysenbach

Submitted in partial fulfillment

of the requirements of the final project

for ECE433: Introduction to Reinforcement Learning

Princeton University

May 2024

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Problem Importance . 3

1.3 Motivation . 3

1.4 Problem Difficulty . 4

1.5 SUPER-DDQN’s Innovation . 5

2 Related Work 5

2.1 Cooperative Communication Protocols . 6

2.2 Discussion of PER Heuristics and TD Error 6

2.3 DQN and Its Variants . 7

2.4 Shared Experience Actor Critic . 7

3 SUPER’s Method 8

3.1 Selection Heuristics . 8

3.2 Deterministic Quantile experience selection 8

3.3 Deterministic Gaussian experience selection 9

3.4 Stochastic weighted experience selection . 9

4 SUPER’s Limitations 9

5 Experimental Procedure 10

5.1 Challenges . 11

5.1.1 Attempt to Implement RPM . 11

5.1.2 Implementation of SUPER-DDQN 11

6 Results 12

ii

7 Appendix 12

7.1 Our Code for Implementing SUPER-DDQN 12

iii

1 Introduction

After realizing that reproducing Multi-Agent PPO with Ranked Policy Memory (RPM) was

intractable in the time we had, we decided to use our learned experience with Multi-Agent

Reinforcement Learning (MARL) codebases and simulators on another paper that advances

MARL through experience sharing. ”Selectively Sharing Experiences Improves Multi-Agent

Reinforcement Learning” [3] addresses the fundamental need for more data efficient meth-

ods in MARL that provide higher performance. Its algorithm is creatively named Selective

Multi-Agent Prioritized Experience Relay (SUPER), and it builds off previous variants of

DQN.

Multi-agent problems are at the cutting edge of the reinforcement learning space both in

terms of algorithms and computational structures. This paper addressed both of these areas

of issue. Experience sharing is generally a process of implementing a connection between the

experience buffers of separately acting agents in off-policy methods of multi-agent reinforce-

ment learning. This has the advantage of data-efficiency, a common problem in environments

which are not easily simulated or are expensive or difficult to sample from. Additionally, we

see (and will discuss in this reproduction) that we can also get performance improvements.

Intuitively, sharing important or rare experiences between agent, especially in collaborative

problems can allow agents to learn more quickly. There are the two main areas SUPER aims

to leverage.

1.1 Problem Statement

In MARL, the total rewards from a multi-agent policy depend on a complex entanglement of

all agents’ actions and interactions in environments that often have complicated dynamics.

The exponentially increased complexity of MARL with respect to single agent reinforcement

learning means that achieving a reasonable level of data efficiency to allow for practical ap-

plications of MARL to be tractable is an even harder problem to solve. ”Selectively Sharing

1

Experiences Improves Multi-Agent Reinforcement Learning” [3] uses the fact that having

multiple agents allows for rapid exploration of an environment to turn the complexity in-

duced by multiple agents into performance boost with experience sharing. Their paper seeks

to address the need for data efficiency in MARL, and succeeds achieving a significant per-

formance boost by having agents share relevant experiences, which they determine through

three heuristics that they test.

Formally, the problem of MARL is formed as a stochastic Markov Game defined by tuples

⟨S,A,R, T, γ⟩ as follows:

• S: Set of states.

• A = {Ai}ni=1: A collection of action sets for each agent Ai

• R = {Ri}ni=1: A collection of reward functions Ri, where each Ri is defined as the

reward ri(at, st) that agent i receives when the joint action at ∈ A is performed at

state st.

• T : The probability distribution over possible transitions

• γ: Discount factor.

The specific frame of the learnable problem is a partially observed Markov game where

each agent has a set of observations defined as experience tuples e = ⟨St, At, Rt+1, St+1⟩.

The approach taken by this paper uses a ”decentralized execution setting” whereby each

agent trains an individual policy πi and optimizes for its specific reward function Ri. The

proposed algorithm demands that the environment be ”anonymous” meaning each actor

interacts identically with the environment and vice versa: the same observation and action

spaces as well as the same environment responses. This is to the shared experiences are

also valid tuples for agents which did not collect them. Although this may seem to be a

narrow scope, consider that many common settings are defined similarly. For example, most

cooperative settings are constructed as anonymous markov games.

2

The other important concepts are Temporal Difference Error, a common metric for loss

in deep Q-learning, and prioritized replay buffers which allow for optimization on state

transitions where we encounter the highest TD error. Both of these concepts are integrated

into the algorithm used as a base for this paper, DDQN, or Double Deep Q-Network. This

algorithm is a standard off-policy formulation which optimizes to reduce TD error gives

batches of gather transition tuples. This paper aims to contribute three heuristics for just

how transition tuples are chosen for training the Q-network.

1.2 Problem Importance

Improving fundamental multi-agent reinforcement learning methods to achieve higher per-

formance and and increased data efficiency is important because the world is full of environ-

ments that require multiple agents to cooperate or compete for society to function. Resource

management systems are everywhere in infrastructure and industry and can be aptly mod-

eled as a multi-agent system [10]. Looking to the future, multi-agent systems have exciting

applications in enumerable fields and industries. The field of autonomous vehicles requires

developing policies for the complex multi-agent interactions of the road for deployment to

ever occur. The environment, economy, and games of strategy can all be modeled as systems

of multiple agents cooperating and competing to receive limited available rewards. These

environments are inherently complex due to the interactions between multiple agents whose

behaviors can affect one another. Allowing multi-agent policies to be learned faster with

greater data efficiency while boosting those policies’ performances will result in greater re-

wards for the people who deploy and interact with multi-agent systems.

1.3 Motivation

SUPER-DDQN advances the capability of MARL by increasing data efficiency while improv-

ing performance. Making significant progress on the inherent problem of data inefficiency in

3

MARL training would allow MARL to provide solutions to many systems that can be mod-

eled as having multiple agents that cooperate or compete with each other for limited rewards.

Deploying these systems in the real-world requires high performance, especially in safety-

critical systems, like autonomous vehicles. It also requires fast learning times that must

be significantly reduced through data efficiency since systems need to be able to retrain on

new data in order to adapt to new environments, and solve problems, like the sim-to-real gap.

1.4 Problem Difficulty

While there are a variety of MARL methods that exist with most single agent reinforcement

learning methods have multi-agent variants, MARL is a rapidly evolving field as researchers

search for ways to make multi-agent policies learn faster and perform better in complicated

environments. The most naive approach to MARL in comparison to single-agent reinforce-

ment learning would be to allow each agent to learn its own policy and reduce the problem to

an isolated single-agent reinforcement learning problem for each agent. The naive approach

would not take into account the fact that each agent’s experience in a multi-agent setting

is affected by the actions of other agents. It would also expose another reason that MARL

problems are more difficult to solve than the inherent difficulties of single-agent reinforce-

ment learning. Every agent’s action changes the environment of all other agents. Even with

a stationary environment where environment dynamics do not change over time, in a multi-

agent setting non-stationary will always be present if more than one agent is acting. The

performance of learned policies naturally fluctuates in response to complex environments,

but even more so in non-stationary complex environments. The naive approach and other

basic approaches from single-agent reinforcement learning will fail to achieve adequate per-

formance in MARL problems because they do not account for the interconnected nature of

agents’ actions, and they do not take advantage of the greater capability of exploration in

multi-agent systems.

4

1.5 SUPER-DDQN’s Innovation

SUPER differs from previous MARL methods by making the complexity introduced by hav-

ing numerous agents in a system a critical asset in exploration and learning. One of the

fundamental difficulties in RL is that you cannot just pick and choose a state for an agent to

be in when modeling most real-world environments. An agent in a distant corner of a vast,

sparse environment that could make a significant leap in learning by having an experience

in a different distant corner of the environment would have to step along a far trajectory to

achieve that learning benefit even if an exploration strategy some how took it straight there.

By sharing relevant experiences, SUPER allows agents to learn from experiences throughout

the environment without increasing the computation load of each agents experiences signif-

icantly.

2 Related Work

Multi-agent reinforcement learning exists on a spectrum between centralized MARL with one

policy controlling all agents, and decentralized MARL where agents operate independently.

This spectrum is characterized by varying levels of agent awareness regarding each other’s

actions and states. Focusing on a semi-decentralized approach, SUPER enables agents to

share experiences, so that it builds off advancements in cooperative communication protocols,

modeling of other agents’ behavior, and the heuristics developed by Prioritized Experience

Replay (PER) for ranking the relevancy of experiences. SUPER leverages the versatility of

Deep Q-Network (DQN) variants. Since SUPER can be integrated with any DQN variant, it

is highly generalizabile. Furthermore, the work extends the strategic paradigm of centralized

training with decentralized execution, emphasizing the modeling of other agents’ behaviors

5

within this framework, which is critical for effective agent cooperation and performance op-

timization in MARL problems.

2.1 Cooperative Communication Protocols

Leveraging inter-agent communication to accelerate learning and improve performance in

dynamic environments is the central theme of the SUPER algorithm. The SUPER algo-

rithm builds off work in the subject of cooperative communication protocols since only the

most relevant experiences being shared allows agents communicate with limited bandwidth.

One paper, which demonstrates the powerful capabilities of cooperative communication, is

”Multi-Agent Cooperation and the Emergence of (Natural) Language” [4]. The authors

proposed a multi-agent communication framework within the context of referential games,

where a sender and a receiver collaborate to identify a target image based on a limited,

fixed vocabulary. With this communication protocol and vocabulary, the agents learned to

coordinate and evolved a ”natural” language to increase their performance in identification.

The SUPER algorithm was primarily tested on the PettingZoo environments, Pursuit and its

variants Adversarial Pursuit and Battle. These environments require cooperation between

agents for any significant rewards to be received (from cornering or surrounding the evader

agents). Likewise the image identification game required the sharing of information between

cooperative agents to allow for success to be achieved.

2.2 Discussion of PER Heuristics and TD Error

The heuristics developed by Prioritized Experience Replay (PER) are used by SUPER as its

ranking method for experiences, but SUPER could be used with different heuristics and does

not depend on PER. PER focuses on the magnitude of the TD error to rank the relevancy

of experiences [7]. This methodology allows for the selective sharing of critical experiences

6

among agents, enhancing the learning speed and overall performance in multi-agent envi-

ronments. By prioritizing experiences where the prediction error is highest, SUPER ensures

that agents learn from the most significant discrepancies in their understanding of the envi-

ronment, leading to more reliable and efficient learning.

2.3 DQN and Its Variants

DQN’s have the ability to achieve human-level performance in complex, dynamic environ-

ments like Atari games [5]. SUPER was implemented on DDQN in [3] since it is a standard

and simple improvement on DQN, but the SUPER algorithm can be implemented on top

of any standard DQN algorithms, demonstrating its flexibility and making it widely appli-

cable. This flexibility is pivotal for adapting DQN’s single-agent learning capabilities to the

multi-agent context, where training can take significantly longer than in single-agent RL.

SUPER’s sharing of high-impact experiences can significantly reduce the time required to

converge on effective strategies when compared to the basic DQN variants, which have the

advantage of being tried and tested on many RL problems.

2.4 Shared Experience Actor Critic

The closest related work to [3] is the Shared Experience Actor Critic approach [2], which

is similar to SUPER, yet without any ranking of experiences. In Shared Experience Actor

Critic, every experience from every is shared to a joint replay buffer. The authors of the

SUPER paper showed that sharing every experience instead of only sharing the most relevant

experiences slows down learning and reduces performance.

7

3 SUPER’s Method

Implemented on standard DQN, the SUPER method was outlined succinctly by the paper’s

authors in Figure 1.

Figure 1: The SUPER method inserted into standard DQN written by the paper’s authors.

We chose to implement the SUPER method on top of DDQN since that was the DQN

variant chosen by the paper’s authors. SUPER-DDQN has every agent share their most

relevant experiences as determined by the chosen selection heuristic for all other agents to

insert into their replay buffer.

3.1 Selection Heuristics

The three experience selection heuristics outlined in the paper are explained in this section.

3.2 Deterministic Quantile experience selection

|td(et)| ≥ quantile({et′}tt′=t−k)

Using this heuristic, SUPER-DDQN maintains a list of the absolute TD-errors from its last

k experiences. When a new experience is processed, its absolute TD-error is compared to

the TD-error at the β-quantile of the list. If the new experience’s TD-error is at least as

large, it is considered significant enough to be shared.

8

3.3 Deterministic Gaussian experience selection

|td(et)| ≥ µ+ c · σ

This heurisitc calculates the mean, µ, and variance, σ2, of the absolute TD-errors from

the last k experiences. An experience et is shared if its TD-error exceeds µ + c × σ. C

is a constant such that the upper tail of the normal distribution beyond c equals . This

cutoff targets sensitivity to outlier clusters by potentially capturing entire clusters rather

than fragments. This selection heuristic reduces memory usage. Mean and variance are

computed iteratively, so all recent TD-errors do not need to be stored.

3.4 Stochastic weighted experience selection

p = min

(
1, β ·

∑
k p

α
i

k

)
This heuristic shares each experience with a probability proportional to its absolute

TD-error. A certain fraction of experiences are sampled from a sliding window of recent

experiences, weighted by their TD-errors. This sampling aims to approximate sampling

without replacement in expectation [3].

4 SUPER’s Limitations

The limitations to SUPER’s method is that it is only tested on standard DQN variants for

MARL problems, yet the idea of sharing relevant experience though cooperative commu-

nication to improve learning could be extended to other families of algorithms. There are

also only three heuristics for selecting experience to share that were tested. Other heuris-

tics could be conceived of and tested, perhaps such that they incorporate skill building or

planning in some way. This said, it is also not necessary to show many heuristics to prove

that experience sharing is a widely applicable and simple leap forward for MARL problems

with cooperative agents where communication is possible. The one significant limitation

9

that exists with SUPER is its dependence on accurate TD error estimation. If the TD error

calculation is flawed or biased, it might lead to sub optimal performance or slower learn-

ing because non-informative experiences could be shared erroneously. Yet, other heuristics

could be designed to avoid this. Furthermore, SUPER was shown to be highly effective by

its authors while using heuristics that depend on TD Error estimation.

5 Experimental Procedure

To reproduce the paper, we used the algorithm shown in Figure 2 as our starting point.

Figure 2: The SUPER-DQN Algorithm written by the paper’s authors.

We built off the implementation of DDQN from class. We decided to focus on the Pursuit

simulator from PettingZoo because it is the simplest game to learn out of the PettingZoo

simulators the authors tested SUPER-DDQN on. We used PettingZoo’s documentation ex-

tensively to code our implementation [8]. The most helpful page was the ”Basic Usage”

page, and the documentation of the Pursuit environment. We used google colab to imple-

ment SUPER-DDQN since it provided the most accessible platform to run on.

10

5.1 Challenges

5.1.1 Attempt to Implement RPM

We originally attempted to reproduce a paper on MARL with Ranked Policy Memory. When

reading through the repository for our original paper, it seemed that there was a fair amount

of code not critical to the main algorithm. It appeared that for our reproduction, under-

standing the code base and written algorithms enough to implement RPM ourselves would be

possible, especially considering that RPM was built on top of on the work of Yu et al., 2021

[9], the algorithm for MAPPO, a more widely known work. Through enumerable hours of

work understanding the git repository ”BenchMARL” [1], implementing our own algorithm,

and getting it to run on Princeton’s GPUs, no results were produced by the program. We

attempted to solve this in a number of ways before realizing that it was intractable in the

time that we had.

Yet, we gained an intimate understanding with simulators like Deepmind’s Meltingpot, Pet-

tingZoo, and the VMAS simulator. Trying to implement MAPPO on which RPM is based

on various code bases as well as extending our own implementation of PPO, gave us a pro-

found understanding and appreciation for the difficulty of solving MARL problems. When

we realized we would have to attempt to edit the source code of torchRL to implement RPM

on top of MAPPO, we decided it would be better to pivot to a similar paper that we could

implement using our new understanding of MARL variants and simulators with the time

and resources we had.

5.1.2 Implementation of SUPER-DDQN

We still faced major challenges while implementing SUPER-DDQN and training. MARL

algorithms even torchRL, a well documented code base, required many hours of debugging

for the program to run. We had difficulties with CUDA storage, and each epoch took around

11

fifty seconds to run.

6 Results

Due to issues of computation, we were unable to produce reasonable results for this repro-

duction. This is a classic issue of MARL and one of the reasons it is such a difficult space to

work in or reproduce papers for. Although we were unaware of this issue initially, we have

become quite aware of the difficulties of dealing with a space that has inconsistently updated

code libraries and widely varying system requirements. As the field matures and computa-

tion improves to meet the incredibly demanding problem formulation, reproducability will

certainly come, but for us to attempt to reproduce this paper took countless hours of coding

to get a number of libraries to coordinate with our freshly adapted DDQN and only then did

we encounter the computational requirements which made this quite an impossible paper to

reproduce with the resources available. That considered, we have learned much about the

general problem formulation and the process of reproducing papers which will be useful in

the future.

7 Appendix

7.1 Our Code for Implementing SUPER-DDQN

12

Setup

Make sure to run every single cell in this notebook, or some libraries might be missing. Also, if you are using Colab, make sure to

change your Runtime (change runtime type under Runtime) to a GPU.

Install the necessary libraries for rendering.

%pdb

!apt-get install x11-utils > /dev/null 2>&1
!pip install pyglet > /dev/null 2>&1
!apt-get install -y xvfb python-opengl > /dev/null 2>&1

!pip install gym pyvirtualdisplay > /dev/null 2>&1

!pip install pettingzoo
!pip install 'pettingzoo[sisl]'
!pip install supersuit

Part 1: Implementing DQN

In this part, you will be filling out the code for a basic DQN model. Recall that for a DQN, we are approximating the Q-value table in

Q-learning with a neural network.

Fill in all sections labelled # FILL ME IN

import os
import pdb
import sys
import copy
import json
import argparse
from datetime import datetime

import random
from collections import deque
from supersuit import color_reduction_v0, frame_stack_v1, resize_v1
import pettingzoo
from pettingzoo.sisl import pursuit_v4
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from IPython import display as ipythondisplay

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class DQN(nn.Module):
 def __init__(self, input, hidden, output):
 super().__init__()
 self.network = nn.Sequential(
 self._layer_init(nn.Conv2d(3, 32, 3, padding=1)),
 nn.MaxPool2d(2),
 nn.ReLU(),
 self._layer_init(nn.Conv2d(32, 32, 3, padding=1)),
 nn.MaxPool2d(2),
 nn.ReLU(),
 nn.Flatten(),
 self._layer_init(nn.Linear(8192, 32)),
 nn.ReLU(),
)
 self.actor = self._layer_init(nn.Linear(32, output), std=0.01)

 def _layer_init(self, layer, std=np.sqrt(2), bias_const=0.0):
 torch.nn.init.orthogonal_(layer.weight, std)
 torch.nn.init.constant_(layer.bias, bias_const)
 return layer

In []:

In []:

In []:

In []:

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 1/9

 def forward(self, x):
 q_vals = self.actor(self.network(x))
 return q_vals

class QNetwork():
 # This class essentially defines the network architecture.
 # It is NOT the PyTorch Q-network model (nn.Module), but a wrapper
 # The network should take in state of the world as an input,
 # and output Q values of the actions available to the agent as the output.

 def __init__(self, args, input, output, learning_rate):
 # Define your network architecture here. It is also a good idea to define any training operations
 # and optimizers here, initialize your variables, or alternately compile your model here.
 self.weights_path = 'models/%s/%s' % (args['env'], datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))

 # Network architecture.
 self.hidden = 128
 self.model = DQN(input, self.hidden, output).to(device)

 # Loss and optimizer.
 self.optim = torch.optim.Adam(self.model.parameters(), lr=learning_rate)

 if args['model_file'] is not None:
 print('Loading pretrained model from', args['model_file'])
 self.load_model_weights(args['model_file'])

 def save_model_weights(self, step):
 # Helper function to save your model / weights.
 if not os.path.exists(self.weights_path): os.makedirs(self.weights_path)
 torch.save(self.model.state_dict(), os.path.join(self.weights_path, 'model_%d.h5' % step))

 def load_model_weights(self, weight_file):
 # Helper function to load model weights.
 self.model.load_state_dict(torch.load(weight_file))

Part 2: Replay Memory

Replay memory or Experience replay is a simple trick used to learn the Q-value network offline. It also ensures the model can learn

from past experiences without weighting heavily towards current observations.

import random
from collections import deque
import torch
import math
from scipy.stats import norm

class Replay_Memory():
 def __init__(self, state_dim, action_dim, memory_size=500, burn_in=300, k=300, beta=0.1):
 self.memory_size = memory_size
 self.burn_in = burn_in
 self.buffer = deque(maxlen=memory_size)
 self.burned_in = False
 self.k = k
 self.beta = beta
 self.sum_td = 0
 self.sum_td_squared = 0
 self.td_errors = deque(maxlen=k)

 def append(self, states, actions, rewards, next_states, dones, td_error):
 if len(self.td_errors) == self.td_errors.maxlen:
 oldest_td_error = self.td_errors.popleft()
 else:
 oldest_td_error = 0

 # Here we append to the replay buffer including our absolute td error
 # For each transition. This we utilize to later sample significant transitions
 # based on each of the three SUPER heuristics.
 self.buffer.append((states, actions, rewards, next_states, dones, abs(td_error)))

 # We continually update our statistics used for two of the
 # three SUPER heuristics for sharing
 self.update_mem_statistics(abs(td_error), oldest_td_error)
 if len(self.buffer) > self.burn_in:
 self.burned_in = True

In []:

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 2/9

 def get_significant_experiences_quantile(self):
 if len(self.buffer) < self.k:
 return []

 # implementing the simple quantile heuristic for experience sharing
 sorted_errors = sorted((e[5], idx) for idx, e in enumerate(self.buffer))
 threshold_index = int(len(sorted_errors) * self.beta) - 1
 threshold = sorted_errors[threshold_index][0]

 significant_experiences = [self.buffer[idx] for td, idx in sorted_errors if td >= threshold]

 return [(s, a, r, ns, d) for (s, a, r, ns, d, _) in significant_experiences]

 def update_mem_statistics(self, abs_td_error, oldest_td_error):
 # Here we maintain sums of td error for the gaussian and probability
 # sharing heuristics
 self.sum_td -= oldest_td_error
 self.sum_td_squared -= oldest_td_error ** 2

 self.td_errors.append(abs_td_error)
 self.sum_td += abs_td_error
 self.sum_td_squared += abs_td_error ** 2

 def get_significant_experiences_normal(self):
 if len(self.td_errors) < self.k:
 return []

 # implementation of the gaussian heuristic for experience sharing
 # using parameter beta.
 mean = self.sum_td / len(self.td_errors)
 variance = self.sum_td_squared / len(self.td_errors) - mean ** 2
 std_dev = math.sqrt(variance)
 threshold = mean + norm.ppf(1 - self.beta) * std_dev

 return [exp for exp in self.buffer if abs(exp[5]) >= threshold]

 def get_significant_experiences_prob(self):
 if len(self.td_errors) < self.k:
 return []

 selected_experiences = []
 total_td_error = self.sum_td_errors

 # implementation of the stochastic heuristic for experience sharing
 for exp in self.buffer:
 td_error = exp[5]
 probability = min(1, (self.beta * td_error) / total_td_error)

 if random.random() < probability:
 selected_experiences.append(exp[:-1])

 return selected_experiences

 def sample_batch(self, batch_size=32):
 sample = random.sample(self.buffer, batch_size)
 batch = tuple(zip(*sample))

 states = torch.stack([s.clone() for s in batch[0]]).requires_grad_().to(device)
 actions = torch.tensor(batch[1], dtype=torch.long).to(device)
 rewards = torch.tensor(batch[2], dtype=torch.float32).requires_grad_().to(device)
 next_states = torch.stack([s.clone() for s in batch[3]]).requires_grad_().to(device)
 dones = torch.tensor(batch[4], dtype=torch.float32).requires_grad_().to(device)

 return states, actions, rewards, next_states, dones

Part 3: The agent class

This section is focused on building the agent that interacts with the environment. The agent wrapper defines a policy (which you will

implement), as well as all of the functionality for learning the network and using experience replay. You will implement a large chunk

of this class.

def batchify_obs(obs, device):
 """Converts PZ style observations to batch of torch arrays."""
 # convert to list of np arrays

In []:

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 3/9

 obs = np.stack([obs[a] for a in obs], axis=0)
 # transpose to be (batch, channel, height, width)
 obs = obs.transpose(0, -1, 1, 2)
 # convert to torch
 obs = torch.tensor(obs).to(device)

 return obs

def unbatchify(x, env):
 """Converts np array to PZ style arguments."""
 x = x.cpu().numpy()
 x = {a: x[i] for i, a in enumerate(env.possible_agents)}

 return x

class DQN_Agent():
 # In this class, we will implement functions to do the following.
 # (1) Create an instance of the Q Network class.
 # (2) Create a function that constructs a policy from the Q values predicted by the Q Network.
 # (a) Epsilon Greedy Policy.
 # (b) Greedy Policy.
 # (3) Create a function to train the Q Network, by interacting with the environment.
 # (4) Create a function to test the Q Network's performance on the environment.
 # (5) Create a function for Experience Replay.

 def __init__(self, args):
 # Create an instance of the network itself, as well as the memory.
 # Here is also a good place to set environmental parameters,
 # as well as training parameters - number of episodes / iterations, etc.

 # Inputs
 self.args = args
 self.environment_name = self.args['env']
 self.render = self.args['render']
 self.epsilon = args['epsilon']
 self.network_update_freq = args['network_update_freq']
 self.log_freq = args['log_freq']
 self.test_freq = args['test_freq']
 self.save_freq = args['save_freq']
 self.learning_rate = args['learning_rate']
 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 self.exp_selection = args['exp_selection']
 self.beta = args['beta']
 self.k = args['k']
 self.share_freq = args['share_freq']
 self.batch_size = args['batch_size']

 # Env related variables
 if self.environment_name == 'CartPole-v0':
 self.env = gym.make(self.environment_name, render_mode='rgb_array')
 self.discount_factor = 0.99
 self.num_episodes = 200
 elif self.environment_name == 'MountainCar-v0':
 self.env = gym.make(self.environment_name, render_mode='rgb_array')
 self.discount_factor = 0.999
 self.num_episodes = 10000
 elif self.environment_name == 'pursuit':
 self.frame_size = (64, 64)
 self.stack_size = 3
 env = pursuit_v4.parallel_env(render_mode='rgb_array', n_pursuers=2)
 env = color_reduction_v0(env)
 env = resize_v1(env, self.frame_size[0], self.frame_size[1])
 self.env = frame_stack_v1(env, stack_size=self.stack_size)
 self.discount_factor = 0.99
 self.num_episodes = 2000
 self.num_agents = len(self.env.possible_agents)
 self.agent_z = self.env.possible_agents[0]
 else:
 raise Exception("Unknown Environment")

 # Other Classes
 print(self.env.observation_space(self.agent_z).shape, self.env.action_space(self.agent_z).n, self.learni
 self.q_nets = dict()
 self.target_q_nets = dict()
 self.memories = dict()
 self.obs_size = self.env.observation_space(self.agent_z).shape[0]
 # self.action_size = self.env.action_space(self.agent_z).n

In []:

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 4/9

 for agent in self.env.possible_agents:
 self.q_nets[agent] = QNetwork(args, self.obs_size, self.env.action_space(agent).n, self.learning_rate)
 self.target_q_nets[agent] = QNetwork(args, self.obs_size, self.env.action_space(agent).n, self.learnin
 self.memories[agent] = Replay_Memory(self.obs_size, self.env.action_space(agent).n, memory_size=args[

 # Plotting
 self.rewards = []
 self.td_error = []
 self.batch = list(range(32))

 # Save hyperparameters
 self.logdir = 'logs/%s/%s' % (self.environment_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
 if not os.path.exists(self.logdir):
 os.makedirs(self.logdir)
 with open(self.logdir + '/hyperparameters.json', 'w') as outfile:
 json.dump((self.args), outfile, indent=4)

 def epsilon_greedy_policy(self, q_values, epsilon, agent):
 # Creating epsilon greedy probabilities to sample from.
 p = np.random.uniform(0, 1)
 if p < epsilon:
 return self.env.action_space(agent).sample()
 else:
 return torch.argmax(q_values).item()

 def greedy_policy(self, q_values):
 return torch.argmax(q_values).item()

 def train(self):
 # In this function, we will train our network.
 # If training without experience replay_memory, then you will interact with the environment
 # in this function, while also updating your network parameters.

 # When use replay memory, you should interact with environment here, and store these
 # transitions to memory, while also updating your model.
 self.burn_in_memory()
 for step in range(self.num_episodes):
 # print("episode", step)
 # Generate Episodes using Epsilon Greedy Policy and train the Q network.
 self.generate_episode(policy=self.epsilon_greedy_policy, mode='train',
 epsilon=self.epsilon, frameskip=self.args['frameskip'])

 # Test the network.
 if step % self.test_freq == 0:
 test_reward, test_error = self.test(episodes=5)
 self.rewards.append([test_reward, step])
 self.td_error.append([test_error, step])

 # Update the target network.
 if step % self.network_update_freq == 0:
 self.hard_update()

 # Logging.
 if step % self.log_freq == 0:
 print("Step: {0:05d}/{1:05d}".format(step, self.num_episodes))

 # # Save the model.
 # if step % self.save_freq == 0:
 # for agent in self.env.agents:
 # self.q_nets[agent].save_model_weights(step)

 # Share experiences dependent on chosen heuristic.
 if step % self.share_freq == 0:
 # print("Sharing experiences")
 sharable_experiences = []
 for agent in self.env.agents:
 if self.exp_selection == 'gaussian':
 sharable_experiences.append(self.memories[agent].get_significant_experiences_normal())
 elif self.exp_selection == 'quantile':
 sharable_experiences.append(self.memories[agent].get_significant_experiences_quantile())
 elif self.exp_selection == 'probability':
 sharable_experiences.append(self.memories[agent].get_significant_experiences_probability())
 else:
 raise Exception("Unknown Experience Selection")

 for agent in self.env.agents:
 for experience in sharable_experiences:
 self.memories[agent].append(experience)

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 5/9

 step += 1
 self.epsilon_decay()

 # Render and save the video with the model.
 if step % int(self.num_episodes / 3) == 0 and self.args['render']:
 # test_video(self, self.environment_name, step)
 self.q_network.save_model_weights(step)

 def td_estimate (self, state, action, agent):
 q_values = self.q_nets[agent].model.forward(state)
 # print(q_values.shape)
 # print(action.shape)
 q_values = q_values.gather(1, action.long().unsqueeze(1)).squeeze()
 # print('est q_vals', q_values.shape)
 return q_values

 def td_target (self, reward, next_state, done, agent):
 with torch.no_grad():
 target_next_q = self.target_q_nets[agent].model.forward(next_state)
 best_action = torch.argmax(target_next_q, axis=1)
 q_values = target_next_q.gather(1, best_action.unsqueeze(1)).squeeze()
 # print('targ q_vals', q_values.shape)
 return reward.squeeze() + self.discount_factor * (1 - done.squeeze()) * q_values

 def train_dqn(self, agent):
 # Sample from the replay buffer.
 state, action, rewards, next_state, done = self.memories[agent].sample_batch(batch_size=self.batch_size)

 # Network Input - S | Output - Q(S,A) | Error - |Y - Q(S,A)|
 # compute td targets and estimate for loss
 # print(state.shape, action.shape, rewards.shape, next_state.shape, done.shape)
 td_estimate = self.td_estimate(state, action, agent)
 td_target = self.td_target(rewards, next_state, done, agent)
 # print('est and targ', td_estimate.shape, td_target.shape)

 if (td_target.shape != td_estimate.shape):
 pass

 # compute loss and backpropogate
 loss = F.smooth_l1_loss(td_estimate, td_target)
 loss.backward()
 self.q_nets[agent].optim.step()
 self.q_nets[agent].optim.zero_grad()

 return loss

 def hard_update(self):
 for agent in self.env.agents:
 self.target_q_nets[agent].model.load_state_dict(self.q_nets[agent].model.state_dict())

 def test(self, model_file=None, episodes=2):
 # Evaluate the performance of your agent over 100 episodes, by calculating cumulative rewards for the 10
 # Here you need to interact with the environment, irrespective of whether you are using a memory.
 cum_reward = []
 td_error = []
 for count in range(episodes):
 reward, error = self.generate_episode(policy=self.epsilon_greedy_policy,
 mode='test', epsilon=0.05, frameskip=self.args['frameskip'])
 cum_reward.append(reward)
 td_error.append(error)
 cum_reward = torch.tensor(cum_reward)
 td_error = torch.tensor(td_error)

 # print(cum_reward, td_error)
 print("\nTest Rewards: {0} | TD Error: {1:.4f}\n".format(torch.mean(cum_reward), torch.mean(td_error)))
 return torch.mean(cum_reward), torch.mean(td_error)

 def burn_in_memory(self):
 # Initialize your replay memory with a burn_in number of episodes / transitions.
 while not self.memories[self.agent_z].burned_in:
 print("still burning", len(self.memories[self.agent_z].buffer))
 self.generate_episode(policy=self.epsilon_greedy_policy, mode='burn_in',
 epsilon=self.epsilon, frameskip=self.args['frameskip'])
 print("Burn Complete!")

 def generate_episode(self, policy, epsilon, mode='train', frameskip=10):
 """

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 6/9

 Collects one rollout from the policy in an environment.
 """
 # print('generating new ep, mode =', mode)
 done = False
 next_obs, info = self.env.reset(seed=None)
 obs = {agent: torch.Tensor(next_obs[agent]).permute(2, 0, 1).to(device) for agent in self.env.agents}
 total_ep_rewards = 0
 td_error = []
 gamma = 0.99

 while self.env.agents and not done:
 actions = {agent: policy(self.q_nets[agent].model.forward(obs[agent].unsqueeze(0).to(device)), epsil
 # print("new actions")
 # cyc_num += 1
 # if cyc_num % 100 == 0:
 # print("cycle", cyc_num)
 i = 0
 while (i < frameskip) and not done:
 next_obs, rewards, dones, _, info = self.env.step(actions)

 total_ep_rewards += sum(rewards.values())
 i += 1

 if mode in ['train', 'burn_in']:
 next_obs_tensor = {agent: torch.Tensor(next_obs[agent]).permute(2, 0, 1).to(device) for agent in
 for agent in self.env.agents:

 action_tensor = torch.tensor(actions[agent], dtype=torch.long).unsqueeze(0).unsqueeze(1).to(
 current_q = self.q_nets[agent].model(obs[agent].unsqueeze(0).to(device)).gather(1, action_te

 next_q = self.q_nets[agent].model(next_obs_tensor[agent].unsqueeze(0).to(device)).max(1)[0].

 current_td_error = rewards[agent] + gamma * next_q * (1 - dones[agent]) - current_q

 self.memories[agent].append(obs[agent], actions[agent], rewards[agent], next_obs_tensor[agen
 # print("current_td", current_td_error)
 td_error.append(current_td_error)
 elif mode in ['test']:
 next_obs_tensor = {agent: torch.Tensor(next_obs[agent]).permute(2, 0, 1).to(device) for agent in
 for agent in self.env.agents:

 action_tensor = torch.tensor(actions[agent], dtype=torch.long).unsqueeze(0).unsqueeze(1).to(
 current_q = self.q_nets[agent].model(obs[agent].unsqueeze(0).to(device)).gather(1, action_te

 next_q = self.q_nets[agent].model(next_obs_tensor[agent].unsqueeze(0).to(device)).max(1)[0].

 current_td_error = rewards[agent] + gamma * next_q * (1 - dones[agent]) - current_q
 # print("current_td", current_td_error)
 td_error.append(current_td_error)

 total_ep_rewards += sum(rewards.values())
 obs = next_obs_tensor if mode in ['train', 'burn_in'] else {agent: torch.Tensor(next_obs[agent]).per
 if mode == 'train' :
 # print('training run')
 for agent in self.env.agents:

 self.train_dqn(agent)
 # print(td_error)
 # print(torch.mean(torch.stack(td_error)))
 if not td_error:
 return total_ep_rewards, []
 return total_ep_rewards, torch.mean(torch.stack(td_error))

 def plots(self):
 """
 Plots:
 1) Avg Cummulative Test Reward over 20 Plots
 2) TD Error
 """
 reward, time = zip(*self.rewards)
 plt.figure(figsize=(8, 3))
 plt.subplot(121)
 plt.title('Cummulative Reward')
 plt.plot(time, reward)
 plt.xlabel('iterations')
 plt.ylabel('rewards')

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 7/9

 plt.legend()
 plt.ylim([0, None])

 loss, time = zip(*self.td_error)
 plt.subplot(122)
 plt.title('Loss')
 plt.plot(time, loss)
 plt.xlabel('iterations')
 plt.ylabel('loss')
 plt.show()

 def epsilon_decay(self, initial_eps=1.0, final_eps=0.05):
 if(self.epsilon > final_eps):
 factor = (initial_eps - final_eps) / 10000
 self.epsilon -= factor

Helpers and Hyperparameters

This class contains helper functions, as well as some extra arguments that you can use to tune or play around with your DQN. There

is no required parts to fill in here.

Note: if you have problems creating video captures on servers without GUI,
you could save and relaod model to create videos on your laptop.
def test_video(agent, env_name, episodes):
 # Usage:
 # you can pass the arguments within agent.train() as:
 # if episode % int(self.num_episodes/3) == 0:
 # test_video(self, self.environment_name, episode)
 save_path = "%s/video-%s" % (env_name, episodes)
 if not os.path.exists(save_path): os.makedirs(save_path)

 # To create video
 env = agent.env # gym.wrappers.Monitor(agent.env, save_path, force=True)
 reward_total = []
 state = env.reset()
 done = False
 print("Video recording the agent with epsilon {0:.4f}".format(agent.epsilon))
 while not done:
 q_values = agent.q_network.model.forward(torch.from_numpy(state.reshape(1, -1)))
 action = agent.greedy_policy(q_values)
 i = 0
 while (i < agent.args['frameskip']) and not done:
 screen = env.render(mode='rgb_array')
 plt.imshow(screen[0])
 ipythondisplay.clear_output(wait=True)
 ipythondisplay.display(plt.gcf())

 next_state, reward, done, info = env.step(action)
 reward_total.append(reward)
 i += 1
 state = next_state
 print("reward_total: {}".format(torch.sum(torch.tensor(reward_total))))
 ipythondisplay.clear_output(wait=True)
 env.close()

def init_flags():

 flags = {
 "env": "pursuit", # Change to "MountainCar-v0" when needed.
 "render": False,
 "train": 1,
 "frameskip" : 2,
 "network_update_freq": 10,
 "log_freq": 10,
 "test_freq": 25,
 "save_freq": 500,
 "learning_rate": 5e-4,
 "memory_size": 1000,
 "epsilon": 0.5,
 "model_file": None, # './models/CartPole-v0/{}/model_5000.h5
 "exp_selection": "gaussian",
 "share_freq": 1,
 "beta": 0.1,
 "k": 1500,
 'batch_size': 16

In []:

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 8/9

 }

 return flags

def main(render=False):
 args = init_flags()
 args["render"] = render

 # You want to create an instance of the DQN_Agent class here, and then train / test it.
 q_agent = DQN_Agent(args)

 # Render output videos using the model loaded from file.
 if args['render']: test_video(q_agent, args['env'], 1)
 else:
 q_agent.train() # Train the model.
 test_video(q_agent, args['env'], 1) # test your implementation in a video
 return q_agent

For training
q_agent = main()

For just evaluating video. Pass in model_file in args.
main(render=True)

In []:

5/7/24, 11:18 PM final_proj

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 9/9

Figure 3: Our results after implementing SUPER-DDQN on Colab

References

[1] M. Bettini, A. Prorok, and V. Moens. Benchmarl: Benchmarking multi-agent reinforce-

ment learning. arXiv preprint arXiv:2312.01472, 2023.

[2] F. Christianos, L. Schäfer, and S. V. Albrecht. Shared experience actor-critic for multi-

agent reinforcement learning. CoRR, abs/2006.07169, 2020.

[3] M. Gerstgrasser, T. Danino, and S. Keren. Selectively sharing experiences improves

multi-agent reinforcement learning, 2024.

22

[4] A. Lazaridou, A. Peysakhovich, and M. Baroni. Multi-agent cooperation and the emer-

gence of (natural) language. CoRR, abs/1612.07182, 2016.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.

Riedmiller. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[6] W. Qiu, X. Ma, B. An, S. Obraztsova, S. Yan, and Z. Xu. Rpm: Generalizable

multi-agent policies for multi-agent reinforcement learning. International Conference

on Learning Representations, https://iclr.cc/virtual/2023/poster/11728, 2023.

[7] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In

Y. Bengio and Y. LeCun, editors, 4th International Conference on Learning Represen-

tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceed-

ings, 2016.

[8] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos,

C. Dieffendahl, C. Horsch, R. Perez-Vicente, et al. Pettingzoo: Gym for multi-agent

reinforcement learning. Advances in Neural Information Processing Systems, 34:15032–

15043, 2021.

[9] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness

of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

[10] Y. Zhu, Y. Zhan, X. Huang, Y. Chen, yujie Chen, J. Wei, W. Feng, Y. Zhou, H. Hu,

and J. Ye. OFCOURSE: A multi-agent reinforcement learning environment for order

fulfillment. In Thirty-seventh Conference on Neural Information Processing Systems

Datasets and Benchmarks Track, 2023.

23

