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1 Introduction

After realizing that reproducing Multi-Agent PPO with Ranked Policy Memory (RPM) was
intractable in the time we had, we decided to use our learned experience with Multi-Agent
Reinforcement Learning (MARL) codebases and simulators on another paper that advances
MARL through experience sharing. ”Selectively Sharing Experiences Improves Multi-Agent
Reinforcement Learning” [3] addresses the fundamental need for more data efficient meth-
ods in MARL that provide higher performance. Its algorithm is creatively named Selective
Multi-Agent Prioritized Experience Relay (SUPER), and it builds off previous variants of
DQN.

Multi-agent problems are at the cutting edge of the reinforcement learning space both in
terms of algorithms and computational structures. This paper addressed both of these areas
of issue. Experience sharing is generally a process of implementing a connection between the
experience buffers of separately acting agents in off-policy methods of multi-agent reinforce-
ment learning. This has the advantage of data-efficiency, a common problem in environments
which are not easily simulated or are expensive or difficult to sample from. Additionally, we
see (and will discuss in this reproduction) that we can also get performance improvements.
Intuitively, sharing important or rare experiences between agent, especially in collaborative
problems can allow agents to learn more quickly. There are the two main areas SUPER aims

to leverage.

1.1 Problem Statement

In MARL, the total rewards from a multi-agent policy depend on a complex entanglement of
all agents’ actions and interactions in environments that often have complicated dynamics.
The exponentially increased complexity of MARL with respect to single agent reinforcement
learning means that achieving a reasonable level of data efficiency to allow for practical ap-

plications of MARL to be tractable is an even harder problem to solve. ”Selectively Sharing



Experiences Improves Multi-Agent Reinforcement Learning” [3] uses the fact that having
multiple agents allows for rapid exploration of an environment to turn the complexity in-
duced by multiple agents into performance boost with experience sharing. Their paper seeks
to address the need for data efficiency in MARL, and succeeds achieving a significant per-
formance boost by having agents share relevant experiences, which they determine through
three heuristics that they test.

Formally, the problem of MARL is formed as a stochastic Markov Game defined by tuples
(S, A, R,T,~) as follows:

e S: Set of states.

A= {A;}",: A collection of action sets for each agent A;

R = {R;},: A collection of reward functions R;, where each R; is defined as the
reward r;(as, s;) that agent i receives when the joint action a; € A is performed at

state s;.

T': The probability distribution over possible transitions
e 7: Discount factor.

The specific frame of the learnable problem is a partially observed Markov game where
each agent has a set of observations defined as experience tuples e = (S;, Ay, Riy1, Siv1)-
The approach taken by this paper uses a ”decentralized execution setting” whereby each
agent trains an individual policy 7; and optimizes for its specific reward function R;. The
proposed algorithm demands that the environment be ”anonymous” meaning each actor
interacts identically with the environment and vice versa: the same observation and action
spaces as well as the same environment responses. This is to the shared experiences are
also valid tuples for agents which did not collect them. Although this may seem to be a
narrow scope, consider that many common settings are defined similarly. For example, most

cooperative settings are constructed as anonymous markov games.



The other important concepts are Temporal Difference Error, a common metric for loss
in deep Q-learning, and prioritized replay buffers which allow for optimization on state
transitions where we encounter the highest TD error. Both of these concepts are integrated
into the algorithm used as a base for this paper, DDQN, or Double Deep Q-Network. This
algorithm is a standard off-policy formulation which optimizes to reduce TD error gives
batches of gather transition tuples. This paper aims to contribute three heuristics for just

how transition tuples are chosen for training the Q-network.

1.2 Problem Importance

Improving fundamental multi-agent reinforcement learning methods to achieve higher per-
formance and and increased data efficiency is important because the world is full of environ-
ments that require multiple agents to cooperate or compete for society to function. Resource
management systems are everywhere in infrastructure and industry and can be aptly mod-
eled as a multi-agent system [10]. Looking to the future, multi-agent systems have exciting
applications in enumerable fields and industries. The field of autonomous vehicles requires
developing policies for the complex multi-agent interactions of the road for deployment to
ever occur. The environment, economy, and games of strategy can all be modeled as systems
of multiple agents cooperating and competing to receive limited available rewards. These
environments are inherently complex due to the interactions between multiple agents whose
behaviors can affect one another. Allowing multi-agent policies to be learned faster with
greater data efficiency while boosting those policies’ performances will result in greater re-

wards for the people who deploy and interact with multi-agent systems.

1.3 Motivation

SUPER-DDQN advances the capability of MARL by increasing data efficiency while improv-

ing performance. Making significant progress on the inherent problem of data inefficiency in



MARL training would allow MARL to provide solutions to many systems that can be mod-
eled as having multiple agents that cooperate or compete with each other for limited rewards.
Deploying these systems in the real-world requires high performance, especially in safety-
critical systems, like autonomous vehicles. It also requires fast learning times that must
be significantly reduced through data efficiency since systems need to be able to retrain on

new data in order to adapt to new environments, and solve problems, like the sim-to-real gap.

1.4 Problem Difficulty

While there are a variety of MARL methods that exist with most single agent reinforcement
learning methods have multi-agent variants, MARL is a rapidly evolving field as researchers
search for ways to make multi-agent policies learn faster and perform better in complicated
environments. The most naive approach to MARL in comparison to single-agent reinforce-
ment learning would be to allow each agent to learn its own policy and reduce the problem to
an isolated single-agent reinforcement learning problem for each agent. The naive approach
would not take into account the fact that each agent’s experience in a multi-agent setting
is affected by the actions of other agents. It would also expose another reason that MARL
problems are more difficult to solve than the inherent difficulties of single-agent reinforce-
ment learning. Every agent’s action changes the environment of all other agents. Even with
a stationary environment where environment dynamics do not change over time, in a multi-
agent setting non-stationary will always be present if more than one agent is acting. The
performance of learned policies naturally fluctuates in response to complex environments,
but even more so in non-stationary complex environments. The naive approach and other
basic approaches from single-agent reinforcement learning will fail to achieve adequate per-
formance in MARL problems because they do not account for the interconnected nature of
agents’ actions, and they do not take advantage of the greater capability of exploration in

multi-agent systems.



1.5 SUPER-DDQN’s Innovation

SUPER differs from previous MARL methods by making the complexity introduced by hav-
ing numerous agents in a system a critical asset in exploration and learning. One of the
fundamental difficulties in RL is that you cannot just pick and choose a state for an agent to
be in when modeling most real-world environments. An agent in a distant corner of a vast,
sparse environment that could make a significant leap in learning by having an experience
in a different distant corner of the environment would have to step along a far trajectory to
achieve that learning benefit even if an exploration strategy some how took it straight there.
By sharing relevant experiences, SUPER allows agents to learn from experiences throughout
the environment without increasing the computation load of each agents experiences signif-

icantly.

2 Related Work

Multi-agent reinforcement learning exists on a spectrum between centralized MARL with one
policy controlling all agents, and decentralized MARL where agents operate independently.
This spectrum is characterized by varying levels of agent awareness regarding each other’s
actions and states. Focusing on a semi-decentralized approach, SUPER enables agents to
share experiences, so that it builds off advancements in cooperative communication protocols,
modeling of other agents’ behavior, and the heuristics developed by Prioritized Experience
Replay (PER) for ranking the relevancy of experiences. SUPER leverages the versatility of
Deep Q-Network (DQN) variants. Since SUPER can be integrated with any DQN variant, it
is highly generalizabile. Furthermore, the work extends the strategic paradigm of centralized

training with decentralized execution, emphasizing the modeling of other agents’ behaviors



within this framework, which is critical for effective agent cooperation and performance op-

timization in MARL problems.

2.1 Cooperative Communication Protocols

Leveraging inter-agent communication to accelerate learning and improve performance in
dynamic environments is the central theme of the SUPER algorithm. The SUPER algo-
rithm builds off work in the subject of cooperative communication protocols since only the
most relevant experiences being shared allows agents communicate with limited bandwidth.
One paper, which demonstrates the powerful capabilities of cooperative communication, is
”Multi-Agent Cooperation and the Emergence of (Natural) Language” [4]. The authors
proposed a multi-agent communication framework within the context of referential games,
where a sender and a receiver collaborate to identify a target image based on a limited,
fixed vocabulary. With this communication protocol and vocabulary, the agents learned to
coordinate and evolved a "natural” language to increase their performance in identification.
The SUPER algorithm was primarily tested on the PettingZoo environments, Pursuit and its
variants Adversarial Pursuit and Battle. These environments require cooperation between
agents for any significant rewards to be received (from cornering or surrounding the evader
agents). Likewise the image identification game required the sharing of information between

cooperative agents to allow for success to be achieved.

2.2 Discussion of PER Heuristics and TD Error

The heuristics developed by Prioritized Experience Replay (PER) are used by SUPER as its
ranking method for experiences, but SUPER could be used with different heuristics and does
not depend on PER. PER focuses on the magnitude of the TD error to rank the relevancy

of experiences [7]. This methodology allows for the selective sharing of critical experiences



among agents, enhancing the learning speed and overall performance in multi-agent envi-
ronments. By prioritizing experiences where the prediction error is highest, SUPER ensures
that agents learn from the most significant discrepancies in their understanding of the envi-

ronment, leading to more reliable and efficient learning.

2.3 DQN and Its Variants

DQN'’s have the ability to achieve human-level performance in complex, dynamic environ-
ments like Atari games [5]. SUPER was implemented on DDQN in [3] since it is a standard
and simple improvement on DQN, but the SUPER algorithm can be implemented on top
of any standard DQN algorithms, demonstrating its flexibility and making it widely appli-
cable. This flexibility is pivotal for adapting DQN’s single-agent learning capabilities to the
multi-agent context, where training can take significantly longer than in single-agent RL.
SUPER’s sharing of high-impact experiences can significantly reduce the time required to
converge on effective strategies when compared to the basic DQN variants, which have the

advantage of being tried and tested on many RL problems.

2.4 Shared Experience Actor Critic

The closest related work to [3] is the Shared Experience Actor Critic approach [2], which
is similar to SUPER, yet without any ranking of experiences. In Shared Experience Actor
Critic, every experience from every is shared to a joint replay buffer. The authors of the
SUPER paper showed that sharing every experience instead of only sharing the most relevant

experiences slows down learning and reduces performance.



3 SUPER’s Method

Implemented on standard DQN, the SUPER method was outlined succinctly by the paper’s

authors in Figure 1.

1. (DQN) Collect a rollout of experiences, and insert each agent’s experiences into their own
replay buffer.

2. (SUPER) Each agent shares their most relevant experiences, which are inserted into all the
other agents’ replay buffers.

3. (DQN) Each agent samples a minibatch of experiences from their own replay buffer, and
performs gradient descent on it.

Figure 1: The SUPER method inserted into standard DQN written by the paper’s authors.

We chose to implement the SUPER method on top of DDQN since that was the DQN
variant chosen by the paper’s authors. SUPER-DDQN has every agent share their most
relevant experiences as determined by the chosen selection heuristic for all other agents to

insert into their replay buffer.

3.1 Selection Heuristics

The three experience selection heuristics outlined in the paper are explained in this section.

3.2 Deterministic Quantile experience selection
ltd(e;)| > quantile{ey }1—; 1)

Using this heuristic, SUPER-DDQN maintains a list of the absolute TD-errors from its last
k experiences. When a new experience is processed, its absolute TD-error is compared to
the TD-error at the S-quantile of the list. If the new experience’s TD-error is at least as

large, it is considered significant enough to be shared.



3.3 Deterministic Gaussian experience selection
ltd(e)| > p+c-o

This heurisitc calculates the mean, u, and variance, o2, of the absolute TD-errors from
the last k experiences. An experience e; is shared if its TD-error exceeds p + ¢ x 0. C
is a constant such that the upper tail of the normal distribution beyond ¢ equals . This
cutoff targets sensitivity to outlier clusters by potentially capturing entire clusters rather
than fragments. This selection heuristic reduces memory usage. Mean and variance are

computed iteratively, so all recent TD-errors do not need to be stored.

3.4 Stochastic weighted experience selection
p = min (1,5 : _Zzpz )

This heuristic shares each experience with a probability proportional to its absolute
TD-error. A certain fraction of experiences are sampled from a sliding window of recent
experiences, weighted by their TD-errors. This sampling aims to approximate sampling

without replacement in expectation [3].

4 SUPER’s Limitations

The limitations to SUPER’s method is that it is only tested on standard DQN variants for
MARL problems, yet the idea of sharing relevant experience though cooperative commu-
nication to improve learning could be extended to other families of algorithms. There are
also only three heuristics for selecting experience to share that were tested. Other heuris-
tics could be conceived of and tested, perhaps such that they incorporate skill building or
planning in some way. This said, it is also not necessary to show many heuristics to prove
that experience sharing is a widely applicable and simple leap forward for MARL problems

with cooperative agents where communication is possible. The one significant limitation



that exists with SUPER is its dependence on accurate TD error estimation. If the TD error
calculation is flawed or biased, it might lead to sub optimal performance or slower learn-
ing because non-informative experiences could be shared erroneously. Yet, other heuristics
could be designed to avoid this. Furthermore, SUPER was shown to be highly effective by

its authors while using heuristics that depend on TD Error estimation.

5 Experimental Procedure

To reproduce the paper, we used the algorithm shown in Figure 2 as our starting point.

Algorithm 1 SUPER algorithm for DQN
for each training iteration do
Collect a batch of experiences b {DQN}
for each agent ¢ do
Insert b; into buffer; {DQN}
end for
for each agent ¢ do
Select b7 C b; of experiences to share! {SUPER}
for each agent j # i do
Insert b; into buffer; {SUPER}
end for
end for
for each agent ¢ do
Sample a train batch b; from buffer; {DQN}
Learn on train batch b; {DQN}
end for
end for

I See section “Experience Selection”

Figure 2: The SUPER-DQN Algorithm written by the paper’s authors.

We built off the implementation of DDQN from class. We decided to focus on the Pursuit
simulator from PettingZoo because it is the simplest game to learn out of the PettingZoo
simulators the authors tested SUPER-DDQN on. We used PettingZoo’s documentation ex-
tensively to code our implementation [8]. The most helpful page was the ”"Basic Usage”
page, and the documentation of the Pursuit environment. We used google colab to imple-

ment SUPER-DDQN since it provided the most accessible platform to run on.

10



5.1 Challenges
5.1.1 Attempt to Implement RPM

We originally attempted to reproduce a paper on MARL with Ranked Policy Memory. When
reading through the repository for our original paper, it seemed that there was a fair amount
of code not critical to the main algorithm. It appeared that for our reproduction, under-
standing the code base and written algorithms enough to implement RPM ourselves would be
possible, especially considering that RPM was built on top of on the work of Yu et al., 2021
9], the algorithm for MAPPO, a more widely known work. Through enumerable hours of
work understanding the git repository ”BenchMARL” [1], implementing our own algorithm,
and getting it to run on Princeton’s GPUs, no results were produced by the program. We
attempted to solve this in a number of ways before realizing that it was intractable in the
time that we had.

Yet, we gained an intimate understanding with simulators like Deepmind’s Meltingpot, Pet-
tingZoo, and the VMAS simulator. Trying to implement MAPPO on which RPM is based
on various code bases as well as extending our own implementation of PPO, gave us a pro-
found understanding and appreciation for the difficulty of solving MARL problems. When
we realized we would have to attempt to edit the source code of torchRL to implement RPM
on top of MAPPO, we decided it would be better to pivot to a similar paper that we could
implement using our new understanding of MARL variants and simulators with the time

and resources we had.

5.1.2 Implementation of SUPER-DDQN

We still faced major challenges while implementing SUPER-DDQN and training. MARL
algorithms even torchRL, a well documented code base, required many hours of debugging

for the program to run. We had difficulties with CUDA storage, and each epoch took around
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fifty seconds to run.

6 Results

Due to issues of computation, we were unable to produce reasonable results for this repro-
duction. This is a classic issue of MARL and one of the reasons it is such a difficult space to
work in or reproduce papers for. Although we were unaware of this issue initially, we have
become quite aware of the difficulties of dealing with a space that has inconsistently updated
code libraries and widely varying system requirements. As the field matures and computa-
tion improves to meet the incredibly demanding problem formulation, reproducability will
certainly come, but for us to attempt to reproduce this paper took countless hours of coding
to get a number of libraries to coordinate with our freshly adapted DDQN and only then did
we encounter the computational requirements which made this quite an impossible paper to
reproduce with the resources available. That considered, we have learned much about the
general problem formulation and the process of reproducing papers which will be useful in

the future.

7 Appendix

7.1 Our Code for Implementing SUPER-DDQN
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5/7/24,11:18 PM final_proj

Setup

Make sure to run every single cell in this notebook, or some libraries might be missing. Also, if you are using Colab, make sure to
change your Runtime (change runtime type under Runtime) to a GPU.

Install the necessary libraries for rendering.
# %pdb

lapt-get install x11-utils > /dev/null 2>&1
!pip install pyglet > /dev/null 2>&1
lapt-get install -y xvfb python-opengl > /dev/null 2>&1

'pip install gym pyvirtualdisplay > /dev/null 2>&1

!pip install pettingzoo
Ipip install 'pettingzoo[sisl]'
!pip install supersuit

Part 1: Implementing DQN

In this part, you will be filling out the code for a basic DQN model. Recall that for a DQN, we are approximating the Q-value table in

Q-learning with a neural network.

Fill in all sections labelled # FILL ME IN

import os

import pdb

import sys

import copy

import json

import argparse

from datetime import datetime

import random

from collections import deque

from supersuit import color_reduction_v@, frame_stack_vl, resize_vl
import pettingzoo

from pettingzoo.sisl import pursuit_v4

import gym

import torch

import torch.nn as nn

import torch.nn.functional as F

import numpy as np

import matplotlib.pyplot as plt

from IPython import display as ipythondisplay

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class DON(nn.Module):
def __init_ (self, input, hidden, output):

super().__init_ ()

self.network = nn.Sequential(
self._layer_init(nn.Conv2d(3, 32, 3, padding=1)),
nn.MaxPool2d(2),
nn.ReLU(),
self._layer_init(nn.Conv2d(32, 32, 3, padding=1)),
nn.MaxPool2d(2),
nn.ReLU(),
nn.Flatten(),
self._layer_init(nn.Linear(8192, 32)),
nn.ReLU(),

)

self.actor = self._layer_init(nn.Linear(32, output), std=0.01)

def _layer_init(self, layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 1/9



5/7/24,11:18 PM final_proj

def forward(self, x):
g_vals = self.actor(self.network(x))
return g_vals

class QNetwork():
# This class essentially defines the network architecture.
# It is NOT the PyTorch Q-network model (nn.Module), but a wrapper
# The network should take in state of the world as an input,
# and output Q values of the actions available to the agent as the output.

def __init__ (self, args, input, output, learning_rate):
# Define your network architecture here. It is also a good idea to define any training operations
# and optimizers here, initialize your variables, or alternately compile your model here.
self.weights_path = 'models/%s/%s' % (args['env'], datetime.now().strftime("%Y-%m-%d_%H—%M-%S"))

# Network architecture.
self.hidden = 128
self.model = DQN(input, self.hidden, output).to(device)

# Loss and optimizer.
self.optim = torch.optim.Adam(self.model.parameters(), lr=learning_rate)

if args['model_file'] is not None:
print('Loading pretrained model from', args['model_file'l)
self.load_model_weights(args['model_file'])

def save_model_weights(self, step):
# Helper function to save your model / weights.
if not os.path.exists(self.weights_path): os.makedirs(self.weights_path)
torch.save(self.model.state_dict(), os.path.join(self.weights_path, 'model_%d.h5' % step))

def load_model_weights(self, weight_file):
# Helper function to load model weights.
self.model.load_state_dict(torch.load(weight_file))

Part 2: Replay Memory

Replay memory or Experience replay is a simple trick used to learn the Q-value network offline. It also ensures the model can learn
from past experiences without weighting heavily towards current observations.

import random

from collections import deque
import torch

import math

from scipy.stats import norm

class Replay_Memory():
def __init_ (self, state_dim, action_dim, memory_size=500, burn_in=300, k=300, beta=0.1):

self.memory_size = memory_size
self.burn_in = burn_in
self.buffer = deque(maxlen=memory_size)
self.burned_in = False
self.k = k
self.beta = beta
self.sum_td = 0@
self.sum_td_squared = 0
self.td_errors = deque(maxlen=k)

def append(self, states, actions, rewards, next_states, dones, td_error)

if len(self.td_errors) == self.td_errors.maxlen:
oldest_td_error = self.td_errors.popleft()
else:

oldest_td_error = 0

# Here we append to the replay buffer including our absolute td error

# For each transition. This we utilize to later sample significant transitions

# based on each of the three SUPER heuristics.

self.buffer.append((states, actions, rewards, next_states, dones, abs(td_error)))

# We continually update our statistics used for two of the
# three SUPER heuristics for sharing
self.update_mem_statistics(abs(td_error), oldest_td_error)
if len(self.buffer) > self.burn_in:

self.burned_in = True
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get_significant_experiences_quantile(self):
if len(self.buffer) < self.k:
return []

# implementing the simple quantile heuristic for experience sharing
sorted_errors = sorted((e[5], idx) for idx, e in enumerate(self.buffer))
threshold_index = int(len(sorted_errors) x self.beta) - 1

threshold = sorted_errors[threshold_index] [0]

significant_experiences = [self.buffer[idx] for td, idx in sorted_errors if td >= threshold]

return [(s, a, r, ns, d) for (s, a, r, ns, d, _) in significant_experiences]

update_mem_statistics(self, abs_td_error, oldest_td_error)

# Here we maintain sums of td error for the gaussian and probability
# sharing heuristics

self.sum_td -= oldest_td_error

self.sum_td_squared -= oldest_td_error ** 2

self.td_errors.append(abs_td_error)
self.sum_td += abs_td_error
self.sum_td_squared += abs_td_error ** 2

get_significant_experiences_normal(self):
if len(self.td_errors) < self.k:
return []

# implementation of the gaussian heuristic for experience sharing
# using parameter beta.

mean = self.sum_td / len(self.td_errors)

variance = self.sum_td_squared / len(self.td_errors) - mean xx 2
std_dev = math.sqrt(variance)

threshold = mean + norm.ppf(1 - self.beta) * std_dev

return [exp for exp in self.buffer if abs(exp[5]) >= threshold]

get_significant_experiences_prob(self):
if len(self.td_errors) < self.k:
return []

selected_experiences = []
total_td_error = self.sum_td_errors

# implementation of the stochastic heuristic for experience sharing
for exp in self.buffer:

td_error = exp[5]

probability = min(1, (self.beta % td_error) / total_td_error)

if random.random() < probability:
selected_experiences.append(exp[:-1])

return selected_experiences

sample_batch(self, batch_size=32):
sample = random.sample(self.buffer, batch_size)
batch = tuple(zip(*sample))

states = torch.stack([s.clone() for s in batch[@]]).requires_grad_().to(device)
actions = torch.tensor(batch[1], dtype=torch.long).to(device)

rewards = torch.tensor(batch[2], dtype=torch.float32).requires_grad_().to(device)
next_states = torch.stack([s.clone() for s in batch[3]]).requires_grad_().to(device)
dones = torch.tensor(batch[4], dtype=torch.float32).requires_grad_().to(device)

return states, actions, rewards, next_states, dones

Part 3: The agent class

This section is focused on building the agent that interacts with the environment. The agent wrapper defines a policy (which you will
implement), as well as all of the functionality for learning the network and using experience replay. You will implement a large chunk
of this class.

def batchify_obs(obs, device):
"""Converts PZ style observations to batch of torch arrays.
# convert to list of np arrays

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 3/9
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obs = np.stack([obs[a] for a in obs], axis=0)

# transpose to be (batch, channel, height, width)
obs = obs.transpose(0, -1, 1, 2)

# convert to torch

obs = torch.tensor(obs).to(device)

return obs

def unbatchify(x, env):
"""Converts np array to PZ style arguments."""
x = x.cpu().numpy()
x = {a: x[i] for i, a in enumerate(env.possible_agents)}

return x

class DQN_Agent():

In this class, we will implement functions to do the following.

(1) Create an instance of the Q Network class.

(2) Create a function that constructs a policy from the Q values predicted by the Q Network.
(a) Epsilon Greedy Policy.
(b) Greedy Policy.

(3) Create a function to train the Q Network, by interacting with the environment.

(4) Create a function to test the Q Network's performance on the environment.

(5) Create a function for Experience Replay.

HOoH K H R R R R

def __init__ (self, args):

Create an instance of the network itself, as well as the memory.

Here is also a good place to set environmental parameters,

as well as training parameters — number of episodes / iterations, etc.

H* B R

# Inputs

self.args = args

self.environment_name = self.args['env']

self.render = self.args['render']

self.epsilon = args['epsilon']
self.network_update_freq = args['network_update_freq']
self.log_freq = args['log_freq']

self.test_freq = args['test_freq'l

self.save_freq = args['save_freq']

self.learning_rate = args['learning_rate']

self.device = torch.device("cuda" if torch.cuda.is_available() else '"cpu")
self.exp_selection = args['exp_selection']

self.beta = args['beta'l

self.k = args['k']

self.share_freq = args['share_freq'l

self.batch_size = args|['batch_size'l

# Env related variables
if self.environment_name == 'CartPole-v0':
self.env = gym.make(self.environment_name, render_mode='rgb_array"')
self.discount_factor = 0.99
self.num_episodes = 200
elif self.environment_name == 'MountainCar-vQ':
self.env = gym.make(self.environment_name, render_mode='rgb_array"')
self.discount_factor = 0.999
self.num_episodes = 10000
elif self.environment_name == 'pursuit':
self.frame_size = (64, 64)
self.stack_size = 3
env = pursuit_v4.parallel_env(render_mode='rgb_array', n_pursuers=2)
env = color_reduction_v@(env)
env = resize_vl(env, self.frame_size[0], self.frame_size[1])
self.env = frame_stack_vl(env, stack_size=self.stack_size)
self.discount_factor = 0.99
self.num_episodes = 2000
self.num_agents = len(self.env.possible_agents)
self.agent_z = self.env.possible_agents[0]
else:
raise Exception("Unknown Environment")

# Other Classes

print(self.env.observation_space(self.agent_z).shape, self.env.action_space(self.agent_z).n, self.learn
self.q_nets = dict()

self.target_q_nets = dict()

self.memories = dict()

self.obs_size = self.env.observation_space(self.agent_z).shape[0]

# self.action_size = self.env.action_space(self.agent_z).n

file:///Users/zachary/Documents/COS_433/final_proj/final_proj.html 4/9



5/7/24,11:18 PM

def

def

def

final_proj

for agent in self.env.possible_agents:
self.qg_nets[agent] = QNetwork(args, self.obs_size, self.env.action_space(agent).n, self.learning_rate
self.target_g_nets[agent] = QNetwork(args, self.obs_size, self.env.action_space(agent).n, self.learnii
self.memories[agent] = Replay_Memory(self.obs_size, self.env.action_space(agent).n, memory_size=args|

# Plotting

self.rewards = []
self.td_error = []
self.batch = list(range(32))

# Save hyperparameters
self.logdir = 'logs/%s/%s' % (self.environment_name, datetime.now().strftime("%Y-%m—%d_%H-%M-%S"))
if not os.path.exists(self.logdir):
os.makedirs(self.logdir)
with open(self.logdir + '/hyperparameters.json', 'w') as outfile:
json.dump((self.args), outfile, indent=4)

epsilon_greedy policy(self, q_values, epsilon, agent):
# Creating epsilon greedy probabilities to sample from.
p = np.random.uniform(@, 1)
if p < epsilon:

return self.env.action_space(agent).sample()
else:

return torch.argmax(q_values).item()

greedy_policy(self, g_values):
return torch.argmax(q_values).item()

train(self):

# In this function, we will train our network.

# If training without experience replay_memory, then you will interact with the environment
# in this function, while also updating your network parameters.

# When use replay memory, you should interact with environment here, and store these
# transitions to memory, while also updating your model.
self.burn_in_memory ()
for step in range(self.num_episodes):
# print("episode", step)
# Generate Episodes using Epsilon Greedy Policy and train the Q network.
self.generate_episode(policy=self.epsilon_greedy_policy, mode='train',
epsilon=self.epsilon, frameskip=self.args['frameskip'])

# Test the network.

if step % self.test_freq == 0:
test_reward, test_error = self.test(episodes=5)
self.rewards.append([test_reward, stepl)
self.td_error.append([test_error, stepl)

# Update the target network.
if step % self.network_update_freq == 0:
self.hard_update()

# Logging.
if step % self.log_freq == 0:
print("Step: {0:05d}/{1:05d}".format(step, self.num_episodes))

# # Save the model.

# if step % self.save_freq ==

#  for agent in self.env.agents:

# self.q_nets[agent].save_model_weights(step)

# Share experiences dependent on chosen heuristic.
if step % self.share_freq ==
# print(“Sharing experiences")
sharable_experiences = []
for agent in self.env.agents:

if self.exp_selection == 'gaussian':
sharable_experiences.append(self.memories[agent].get_significant_experiences_normal())

elif self.exp_selection == 'quantile':
sharable_experiences.append(self.memories[agent].get_significant_experiences_quantile())

elif self.exp_selection == 'probability"':
sharable_experiences.append(self.memories[agent].get_significant_experiences_probability())

else:

raise Exception("Unknown Experience Selection")

for agent in self.env.agents:
for experience in sharable_experiences:
self.memories[agent].append(experience)
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step += 1
self.epsilon_decay()

# Render and save the video with the model.

if step % int(self.num_episodes / 3) == 0 and self.args['render']:
# test_video(self, self.environment_name, step)
self.q_network.save_model_weights(step)

def td_estimate (self, state, action, agent):
g_values = self.qg_nets[agent].model.forward(state)
# print(q_values.shape)
# print(action.shape)
g_values = g_values.gather(1, action.long().unsqueeze(1)).squeeze()
# print('est q_vals', q_values.shape)
return g_values

def td_target (self, reward, next_state, done, agent):
with torch.no_grad():
target_next_q = self.target_qg_nets[agent].model.forward(next_state)
best_action = torch.argmax(target_next_q, axis=1)
g_values = target_next_g.gather(1l, best_action.unsqueeze(1)).squeeze()
# print('targ q_vals', q_values.shape)
return reward.squeeze() + self.discount_factor * (1 - done.squeeze()) * g_values

def train_dgn(self, agent):
# Sample from the replay buffer.
state, action, rewards, next_state, done = self.memories[agent].sample_batch(batch_size=self.batch_size

# Network Input - S | Output - Q(S,A) | Error — |Y = Q(S,A)|

# compute td targets and estimate for loss

# print(state.shape, action.shape, rewards.shape, next_state.shape, done.shape)
td_estimate = self.td_estimate(state, action, agent)

td_target = self.td_target(rewards, next_state, done, agent)

# print('est and targ', td_estimate.shape, td_target.shape)

if (td_target.shape != td_estimate.shape):
pass

# compute loss and backpropogate

loss = F.smooth_11_loss(td_estimate, td_target)
loss.backward()

self.q_nets[agent].optim.step()
self.q_nets[agent].optim.zero_grad()

return loss

def hard_update(self):
for agent in self.env.agents:
self.target_g_nets[agent].model.load_state_dict(self.q_nets[agent].model.state_dict())

def test(self, model_file=None, episodes=2):

# Evaluate the performance of your agent over 100 episodes, by calculating cumulative rewards for the 1t
# Here you need to interact with the environment, irrespective of whether you are using a memory.
cum_reward = []
td_error = []
for count in range(episodes):

reward, error = self.generate_episode(policy=self.epsilon_greedy_policy,

mode="test', epsilon=0.05, frameskip=self.args['frameskip'])

cum_reward.append(reward)

td_error.append(error)
cum_reward = torch.tensor(cum_reward)
td_error = torch.tensor(td_error)

# print(cum_reward, td_error)
print("\nTest Rewards: {0} | TD Error: {1:.4f}\n".format(torch.mean(cum_reward), torch.mean(td_error)))
return torch.mean(cum_reward), torch.mean(td_error)

def burn_in_memory(self):
# Initialize your replay memory with a burn_in number of episodes / transitions.
while not self.memories[self.agent_z].burned_in:
print("still burning", len(self.memories[self.agent_z].buffer))
self.generate_episode(policy=self.epsilon_greedy_policy, mode='burn_in',
epsilon=self.epsilon, frameskip=self.args['frameskip'])
print("Burn Complete!")

def generate_episode(self, policy, epsilon, mode='train', frameskip=10):
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Collects one rollout from the policy in an environment.

# print('generating new ep, mode =
done = False

next_obs, info = self.env.reset(seed=None)

obs = {agent: torch.Tensor(next_obs[agent]).permute(2, @, 1).to(device) for agent in self.env.agents}
total_ep_rewards = 0

td_error = []

gamma = 0.99

, mode)

while self.env.agents and not done:
actions = {agent: policy(self.q_nets[agent].model.forward(obs[agent].unsqueeze(0).to(device)), epsi
# print("new actions")
# cyc_num += 1
# if cyc_num % 100 == 0:
#  print("cycle", cyc_num)
i=20
while (i < frameskip) and not done:
next_obs, rewards, dones, _, info = self.env.step(actions)

total_ep_rewards += sum(rewards.values())
i+=1

if mode in ['train', 'burn_in']:
next_obs_tensor = {agent: torch.Tensor(next_obs[agent]).permute(2, 0, 1).to(device) for agent ii
for agent in self.env.agents:

action_tensor = torch.tensor(actions[agent], dtype=torch.long).unsqueeze(@).unsqueeze(1).to
current_q = self.q_nets[agent].model(obs[agent].unsqueeze(0).to(device)).gather(1, action_te

next_q = self.q_nets[agent].model(next_obs_tensor[agent].unsqueeze(0).to(device)).max(1) [0]

current_td_error = rewards[agent] + gamma * next_g * (1 - dones[agent]) - current_qg

self.memories[agent].append(obs[agent], actions[agent], rewards[agent], next_obs_tensor[agel
# print("current_td", current_td_error)
td_error.append(current_td_error)
elif mode in ['test']:
next_obs_tensor = {agent: torch.Tensor(next_obs[agent]).permute(2, 0, 1).to(device) for agent ii
for agent in self.env.agents:

action_tensor = torch.tensor(actions[agent], dtype=torch.long).unsqueeze(0).unsqueeze(1).to
current_q = self.qg_nets[agent].model(obs[agent].unsqueeze(0).to(device)).gather(1l, action_t¢

next_q = self.q_nets[agent].model(next_obs_tensor[agent].unsqueeze(0).to(device)).max(1) [0]

current_td_error = rewards[agent] + gamma * next_q * (1 - dones[agent]) - current_q
# print("current_td", current_td_error)
td_error.append(current_td_error)

total_ep_rewards += sum(rewards.values())
obs = next_obs_tensor if mode in ['train', 'burn_in'] else {agent: torch.Tensor(next_obs[agent]).pe
if mode == 'train'

# print('training run')

for agent in self.env.agents:

self.train_dgn(agent)
# print(td_error)
# print(torch.mean(torch.stack(td_error)))
if not td_error:
return total_ep_rewards, []
return total_ep_rewards, torch.mean(torch.stack(td_error))

plots(self):

Plots:

1) Avg Cummulative Test Reward over 20 Plots
2) TD Error

reward, time = zip(xself.rewards)

plt.figure(figsize=(8, 3))
plt.subplot(121)
plt.title('Cummulative Reward')
plt.plot(time, reward)
plt.xlabel('iterations")
plt.ylabel('rewards")
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plt.legend()
plt.ylim([@, Nonel)

loss, time = zip(xself.td_error)
plt.subplot(122)
plt.title('Loss")

plt.plot(time, loss)
plt.xlabel('iterations")
plt.ylabel('loss')

plt.show()

def epsilon_decay(self, initial_eps=1.0, final_eps=0.05):
if(self.epsilon > final_eps):
factor = (initial_eps - final_eps) / 10000
self.epsilon -= factor

Helpers and Hyperparameters

This class contains helper functions, as well as some extra arguments that you can use to tune or play around with your DQN. There

is no required parts to fill in here.

# Note: if you have problems creating video captures on servers without GUI,

# you could save and relaod model to create videos on your laptop.
def test_video(agent, env_name, episodes):
# Usage:
# you can pass the arguments within agent.train() as:
# if episode % int(self.num_episodes/3) ==
# test_video(self, self.environment_name, episode)
save_path = "%s/video-%s" % (env_name, episodes)

if not os.path.exists(save_path): os.makedirs(save_path)

# To create video

env = agent.env # gym.wrappers.Monitor(agent.env, save_path, force=True)
reward_total = []

state = env.reset()

done = False

print("Video recording the agent with epsilon {0:.4f}".format(agent.epsilon))
while not done:

g_values = agent.g_network.model.forward(torch.from_numpy(state.reshape(1, -1)))

action = agent.greedy_policy(q_values)

i=0

while (i < agent.args['frameskip']) and not done:
screen = env.render(mode="'rgb_array')
plt.imshow(screen[0])
ipythondisplay.clear_output(wait=True)
ipythondisplay.display(plt.gcf())

next_state, reward, done, info = env.step(action)
reward_total.append(reward)
i+=1
state = next_state
print("reward_total: {}".format(torch.sum(torch.tensor(reward_total))))
ipythondisplay.clear_output(wait=True)
env.close()

def init_flags():

flags = {
"env": "pursuit", # Change to "MountainCar-v@" when needed.

"render": False,

"train": 1,

"frameskip" : 2,

"network_update_freq": 10,

"log_freq": 10,

"test_freq": 25,

"save_freq": 500,

"learning_rate": 5e-4,

"'memory_size": 1000,

"epsilon": 0.5,

""model_file": None, # './models/CartPole-v@/{}/model_5000.h5

"exp_selection": '"gaussian",

"share_freq": 1,

"beta": 0.1,

"k': 1500,

'batch_size': 16
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}

return flags

def main(render=False):
args = init_flags()
args["render"] = render

# You want to create an instance of the DQN_Agent class here, and then train / test it.
g_agent = DQN_Agent(args)

# Render output videos using the model loaded from file.
if args['render']: test_video(q_agent, args['env'], 1)
else:
g_agent.train() # Train the model.
test_video(q_agent, argsl'env']l, 1) # test your implementation in a video
return g_agent

# For training
g_agent = main()

# For just evaluating video. Pass in model_file in args.
# main(render=True)
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Figure 3: Our results after implementing SUPER-DDQN on Colab
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