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1 Introduction

This project evolved from its initial proposal as I immersed myself in the field
of Sound Source Localization [SSL] with Deep Learning, and focused on Sound
Event Localization and Detection [SELD]. My passion for my research project
comes from my family history. My sister is half deaf, so she cannot locate
the origin of sounds. This is a problem known as spatial hearing loss. Spatial
hearing loss is a greater problem than it might initially appear to people with
full hearing. Children with spatial hearing loss have difficulty understanding
speech in the classroom leading to worse learning outcomes since humans use
the “spatial distribution of sources to suppress unwanted signals” [3]. Spatial
hearing is crucial for humans’ natural ability to filter out background noise and
focus on one source of audio. When we focus on a teacher’s voice we subcon-
sciously use spatial hearing to help us ignore the noise around us. One study,
which confirmed the results of several earlier studies, “demonstrated a 12-dB
improvement in performance, referred to as spatial advantage. [...] participants
were able to understand the target sentences at a 12-dB worse signal-to-noise
ratio (SNR) once the signal and the noise were separated and they could use
spatial processing to assist them with the task” [4].

After reading [5], I learned of the DCASE2024 challenge and focused on Task
3: Audio and Audiovisual Sound Event Localization and Detection with Source
Distance Estimation, as a useful conduit for my research. I chose to focus on
the First-Order Ambisonics [FOA] format, and a multi-ACCDOA approach, the
benefits of which are described in [8].

The final goal was to reproduce the results of the baseline SELD system,
and reduce training time, so that future improvements to the system could be
trained and tested faster. My results from reproducing the baseline and testing
different batch sizes and correlated learning rates, are shown in 1 and 2. The
baseline results were successfully reproduced, and the batch sizes were not found
to have a significant negative effect on testing accuracy as described in [6], but
the batch sizes did not have a significant effect on the training time. A batch
size of 512 with GPU (Trial 3a) did have the lowest training time out of all trials
using a GPU, and it was less than half of the time of Trial 3b, which did not use
a GPU. This was fascinating since GPU use was very low, only 3% on average
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for all GPU trials. This result suggested that loading the data onto the GPU
took the vast majority of the CPU compute time, and that the GPU was critical
for a few computationally intensive parts of the program. To better understand
this phenomenon, I profiled the GPU usage using line profiler. It turned out
that the data transfer did not take up a high percentage of the job’s time. It
was actually the determine similar location function that consumed the major-
ity of the compute time. The test epoch function consumed 86.6% of the total
compute time. Within, the test epoch function, the determine similar location
function consumed 69.3% of the compute time. I tried to optimize the deter-
mine similar location function to reduce the total compute time of training and
testing this SELD system, but I was not successful in the time I had. I learned
so much during this project, and I will probably continue to look into this on
my own.

2 Reproducing and Accelerating the Baseline

The first step in reproducing the baseline system was learning how Princeton’s
High Performance computing cluster worked. I worked through the tutorial,
Getting Started with the Research Computing Clusters Video Version. Using
the tutorial’s lessons, I set up a conda environment to test the baseline code in,
and wrote a slurm job file. I successfully extracted the labels from the data.
Then I did small tests with the training program using only a subset of the data
and a limited number of epochs. When that was successful I gradually requested
more resources from Adroit until the training on the full dataset with 250 epochs
was successful. My results show the baseline was reproduced using code from the
DCASE 2024 SELD Repository with “Published” being the baseline’s published
results, and “Reproduced” being my own. The published results used F20, a
more limited version of the F-Score metric, which is a measure of how accurate
the classification of the sounds are, and did not include a SELD score or distance
metric.

Test Parameters Reproduced 002 003a 003b 004
Batch Size 128 256 512 512 1028
Learning Rate 0.001 0.002 0.004 0.004 0.008
GPUs 1 1 1 0 1
CPU Cores 1 1 1 1 1
Run Time 08:15:35 08:22:16 07:38:50 18:23:28 08:26:46
CPU Utilization (%) 99 99 100 100 100
CPU Memory Usage (%) 25 28 68 63 61
GPU Utilization (%) 3 2 3 NA 2
GPU Memory Usage (%) 10 18 35 NA 68

Table 1: Comparison of Adroit Resources Used Across Trials
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Metric Published Reproduced 002 003a 003b 004
SELD Score NA 0.52 0.49 0.56 0.49 0.61
SED F-score 13.1 15.8 14.1 13.8 14.1 13.2
DOA Angular Error 36.9 37.4 37.6 33.2 38.5 33.7
Distance Metrics NA 0.53 0.54 0.50 0.54 0.55
Relative Distance Metrics 0.33 0.29 0.29 0.29 0.28 0.30

Table 2: Comparison of SELD Metrics Across Trials

3 Lessons Learned

The tutorial by Princeton Research Computing was critical to successfully writ-
ing a slurm script, setting up a conda environment on Adroit, transferring code
and data to Adroit, and running my jobs. I learned how to navigate Adroit and
Princeton’s High Computing Resources to test programs and allocate resources
properly. One useful rule in Princeton Research Computing’s introduction to
using their computing clusters is to maintain an organized file system with a
README, so that in the event someone else ever has to continue your research
or look at your work, it is as easy as possible to do so. I set up my initial file
system on Adroit with the goal of maintaining an organized system, and copied
the tutorial’s suggested file system of separating files, data, and projects. Yet,
even with my preparation in writing this report, I realized I had named my
output files with names that were not significantly clear as to what trial went
with what job id, which mattered in my case since I was also testing different
parameters affect on training time and CPU/GPU utilization. I was able to
figure out which job went with which output file, but it was a good reminder
that organization in your file system and data must be rigorously maintained.

While learning the ins and outs of using Princeton Research Computing for
machine learning, I also learned about the deep field of SELD research. I learned
the importance of data augmentation methods in a field where data collection
tends to be expensive and time-intensive.

I would like to thank my advisor Professor Hossein Valavi for his guidance
over the summer.

4 Material Expenses

With my original proposal, I submitted a budget that was mainly required
for data collection. As my project evolved, I found data sets that worked for
my research very well, and I was able to bypass doing data collection for this
summer. Thus, I did not need to use any of the $480 approved for my project,
but I appreciate the generosity of the SEAS undergraduate research program.
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